Programmer’s Guide

Psy-Q ™ from Psygnosis Ltd

65816 Development System
for Nintendo Super-NES

Information in this document is subject to change without notice.No part of this
document may be transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express permission of Psygnosis Ltd.

© 1993, 1994 Psygnosis Ltd. All rights reserved.

Psygnosis Ltd,

South Harrington Building,
Sefton Street,

Liverpool L34BQ

Document Number: BDL3005-3 (Nintendo)

Nintendo Contents jii

Contents
INEOAUCHION = 4 v & = ¢ & sim 5 &5 & 64 % 85 o m oo - = ix
AboutPsy-Q xi
Psy-QforSuper-NES xii
Psy-Q Issue Information xiii
Acknowledgements XV
CHAPTER 1 PClnstallation 1
Installation check list 3
Installing the PC Interface 5
Installing the PC Software 7
POVBIOBCONL & & « s sla s ba s wdoi o 2 80 6w o 9
CHAPTER 2 The ASM658 Assembler 11
Command Line Syntax 13
Running with Brief 17
ASSRIABITEIBE. w2 9 5 0w simde G e 6 8 g 8 18
RUN.EXE - program downloader 19

Psy-Q Development System

iv

Programmer’s Guide

CHAPTER 3 Syntax of Assembler Statements . 21

Format of Statements 23
Format of Names and Labels 24
Formatof Constantsi. .. « &« ww o= = @@ s 5 6 5 6 25
Special Constants 26
Assembler Functions 28
Special Functions : : « s « « s w o o s s mw s 5 @ 29
Assembler Operators 31
65816 Addressing Modes 53
RADIX 37
ALIASandDISABLE 38

CHAPTER 4 General Assembler Directives . .39

Assignment Directives 41
EOU . &\ o fe e v o s om0 b 58 585 58 43
SET 45
EQUS 47
RB,RW,RLandRT 50
RSSEL . . v cowiai v v ims mamanns 8686 33 32
RSRESET . ' e i i 80 e 6 dow o & o sl e s 6 6 53
Data Definition. 55
DB, DW,DLandDT 56
DCB,DCW,DCLand DCT 58
DS ,:sssaswsssnmnia ess s pamsss s 59
HEX . v ..aiwssnaminasncass &5 6s 60
DATASIZEand DATA 61
IEEE32 andIEEE64 62
Controlling Program Execution 63
ORG o 64
CNOP 66
OBJandOBIEND : : v s ¢ ¢ s s s s wsw s 5 s 67
IncludeFiles 69
INCLUDE00:i:s886::8668:: 8. 70

Psy-Q Development System

Super-NES

Nintendo Contents
INGBEN . < ¢ a2t 0 il & sm @05 B & b 72
REE" 5 mosyme o wngs b oo 7 o ofb: & o 8556 Gy v 74
PEE i @ 8 nebhie ng e abaa s aeg 75
Assembly FlowControl 77
END 78
IF, ELSE, ELSEIF, ENDIF, ENDC 79
CASEandENDCASE 81
RERT, ENBDRELK - 3 wlar s o i bl & 8 2t o8 &' 0w 83
WHILE,ENDW 84
DO 5s snons i b inmn s b ns 86
Register Handling Directives 87
ASSUME ; s o0 :: sapnemm o5 6@ 5 5 66 52 89
PROGENDP & : ¢ s s s msm o5 606 ¢ % o 91
LABEL: o i 0 b s s Sl vy iy B e 93
CALL,JUMP . . v i s ow i oms s S s oo 94
LONGA, LONGLMX & come o5 man s & o5 96
PUSHA; POPA . . : cscs sme s mas i 56w 98
REGSttt et e e it e e e 99

CHAPTER 5 Macros. 101
MACRO, ENDM,MEXIT 103
Macro Parameters 105
Special Parameters 107
SHIFT,NARG 110
MACRES s s s sms 0 smasadesasss s 111
PUISHP POBRY . 1 5. 12w ol mmara ws i @i 4 112
PUIBBEE. 5 50 & w & o' iy woddl o 60 80 00y so' o § 13
TYERE (et hiom s aibdl s ds : Bito b 114
CHAPTER 6 String Manipulation 115
STRLEN .icic o ai w0 o G b 300 o i o 6 lse 8 117
DIRCME: v s s nctoms Piaiess dae s 118
INSTR : s a0m 0 ¢ 5 65 5 5 ame 25 588 5 5 560 119
SUBSTR, 120

Psy-Q Development System

vi Programmer’s Guide Super-NES

CHAPTER 7 LocallLabels 121
Syntaxand Scope 123
MODULE and MODEND 125
LOCAL, wosssowesmmesnemsaoan s 127

CHAPTER 8 Structuring the Program 129
GROUP 131
HECTION .. cpsasrpnazasessman o 134
PUSHSAOAPOPS & & « ¢ v v sm i @ 5 06 mos o 6 137
SECTandOFFSET 138

OPT :c s casnsasnmenrmaag: dams =s 141
Assembler Options 142
Option Descriptions 143
PUSHO and POPO . : s sw ¢ s smn s mos &3 146
LISTand NOLIST ¢ wam i s ses s mans o s 147
INFORMand FAIL 149
XDEF, XREFand PUBLIC 151
GLOBAL . :swc:s spmasmmss sam o oo 153

CHAPTER 10 DBUG658-The Debugger . . 155

Command Line Syntax 157
Configuration Files 160
Activity WItldOWS = : = o s+ ¢ s smw s » ww & & @ 5 162
Using Debugger Windows 165
Keyboard Options 169
MenuOptions 175
The Link Software : : « o ¢ ¢ s mu s s s 56 5 5 56 177

Psy-Q Development System

Nintendo

Contents vii
CHAPTER 11 The PSYLINK Linker 179
Command Line Syntax 181
Linker Command Files 183
XDEF, XREF and PUBLIC 185
GLOBAL : 55 s wdsvsmacsmes as ass 187
CHAPTER 12 Thelibrarian 189
PSYLIB Command LIne Syntax 191
CHAPTER 13 The PSYMAKE Utility 193
PSYMAKE Command Line Syntax 195
Contents of the Makefile 196
CHAPTER 14 Setting up the Target machine . 205
Installing the Target Interface Adapter 207
Adapter Firmware Diagnostics 212
Target Interface Software Functions 213
Fileserver FUDCHONS & 5 + ¢ 5w 5 5 soms ¢ 5 2w s 218
APPENDICES . : i ssaissos iniesas 221
Appendix A ASM658 Error Messages 223
Appendix B Psylink Error Messages 239
Appendix C Psylib Error Messages 247
Appendix D The SPC700 Assembler 249
Using the SPC700 Assembler 251

Psy-Q Development System

viii Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Introduction ix

Introduction

Welcome to Psy-Q™ - the powerful development system
linking PCs to Consoles and Games machines.

This version of Psy-Q features:

O

Fast 65816 Assembler, capable of assembling at over a
million lines of code per minute, and able to
communicate directly with the target machine;

High Speed Linker and Librarian, with extensive
link-time options;

Powerful Source Level Debugger, allowing the
programmer to step, trace and set breakpoints directly in
the source code.

Compact PC and Target machine adapters, simple to
fit, with no requirement to open or deface the target
machine.

Psy-Q Development System

Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Introduction xi

About Psy-Q

e Psy-Q has been developed by Psygnosis and S N
Systems, with many years of experience of development
software and developers’ needs. Psy-Q represents the
next generation of development systems, backed up by
a commitment to continual enhancement, development
and technical support.

e Psy-Q includes an industry-standard Assembler, Linker
and Debugger. The Assembler is extremely fast, and
fully compatible with other popular development
systems. The Debugger offers an additional easy-to-use
user interface, with full support for mouse and pop-down
menus, and works in any text screen resolution.

e Psy-Q offers Source Level Debugging. This allows you
to step, trace, set breakpoints, etc. in your original C or
Assembler source code. The system automatically, and
invisibly, handles multiple text files.

e Psy-Q provides a high-speed genuine SCSI parallel link
between Host PC and target system, with a data transfer
rate of up to 500 Kilobytes per second. The system
supports up to 7 connected target devices, and cable
lengths of over 6 metres.

e Psy-Q’s Assembler and Linker make full use of
extended or expanded memory, on PC compatibles with
more than 640K of RAM.

Psy-Q Development System

xii Programmer’s Guide Super-NES

Psy-Q for Super-NES

The target interface is a compact steel-cased cartridge,
that plugs into the cartridge slot of any ordinary,
unmodified Super-NES console.

The adapter provides a through connector, to allow you to
plug in and read production Nintendo cartridges, and to
access hardware that may be on them.

Built-in adapter firmware provides diagnostics and
self-test facilities. Also included are assorted functions for
useful run-time control of the development environment,
as well as extensive fileserver facilities, to allow the target
to manipulate files on the host PC.

Note that a standard Nintendo cartridge must be present
Jfor the unit to operate. This cartridge not only supplies the
security chip, but can also provide facilities such as DSP
chips and battery-backed RAM.

Psy-Q Development System

Nintendo

Introduction xiii

Psy-Q Issue Information

Psy-Q development systems are available for a variety of

platforms:

Nintendo Super NES
SEGA Mega Drive
SEGA Mega-CD
Commodore Amiga 1200

This Psy-Q development system, for the Nintendo
Super-NES, is issued on a single diskette, which can be
copied directly to a hard disk.

Contents of Issue Diskette:

ASMO658.EXE
DBUGO658.EXE
PSYLINK.EXE
PSYLIB.EXE

RUN.EXE

PSYMAKE.COM

PSYBIOS.COM

65816 Assembler
65816 Debugger
Psy-Q Linker
Psy-Q Librarian

Standalone Executable/Binary
downloader

Psy-Q Make Utility

Psy-Q TSR BIOS extensions
for PC host

Psy-Q Development System

Xiv

Programmer’s Guide Super-NES

Depending on the issue and version, the following files may also
be included:

ASMSPC.EXE SPC700 Assembler

MAKEFILE.MAK Sample Makefile

PSYQ.CB Brief Macros Source

PSYQ.CM Compiled Brief Macros

xxxx.ICO ICON Files, to aid
installation of Psy-Q under
Windows

Psy-Q Development System

Nintendo

Introduction XV

Psy-Q

Acknowledgements

The Psy-Q Development platform has been designed
produced by S.N. Systems Limited, on behalf of
Psygnosis Limited.

"Psy-Q’ is a trademark of Psygnosis Ltd

Dos and Windows

Brief

Nintendo

Microsoft, MS, MS-DOS are registered trademarks of
Microsoft Corporation;
Windows is a trademark of Microsoft Corporation.

Brief is a trademark of Borland International.

Super-NES, Nintendo are all trademarks of Nintendo Co
Ltd.

Psy-Q Development System

xvi Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 1 PC Installation 1

CHAPTER 1

PC Installation

The Psy-Q development system consists of the following
physical components:

PC Board

Target Interface

Connecting Cable

PC driver and Bios extensions
Psy-Q executable files

oOoooo

Installation is, therefore, a relatively straightforward
procedure, and is described in this chapter under the
following headings:

Installation Check List
PC Interface Installation
PC software Installation
PSYBIOS

See Chapter 14 - Setting up the Target Machine for the
installation of the target adapter.

Psy-Q Development System

2

Programmer’s Guide

Super-NES

Psy-Q Development System

Nintendo Chapter 1 PC Installation 3

Installation check list

O Check the configuration of the Psy-Q PC board and
install in the host PC - see page 5 for full installation
details.

O Check configuration of the Psy-Q Target Adapter and
install in the target console or machine - see page 207
for full installation details.

O Connect the supplied cable from the PC to the target
machine.

O Load the PC board driver by typing, typically:
PSYBIOS /a308 /d7 /i15
See page 9 for full details of PSYBIOS.COM.

O Copy the runtime Psy-Q executable files to a directory
on your PC - see the Issue List, in the Introduction, for
the programs supplied with this version of Psy-Q.

O Switch on the target console, and insert a standard
Nintendo cartridge.

O Run the program RUN.EXE, without parameters, to
verify the link to the target adapter - see page 19 for
details of the RUN downloader program.

[0 If RUN correctly identifies the target, the Psy-Q system
is now ready to be used, to assemble, download and
debug programs.

Psy-Q Development System

4 Programmer’s Guide Super-NES

Note that, if the target interface adapter is configured with
an ID other than zero, the target ID must be included on
the command line of all development tools.

Psy-Q Development System

Nintendo

Chapter 1 PC Installation 5

Installing the PC Interface

The Psy-Q PC Interface board should be fitted in to an
empty 16 bit slot in the host PC. The host must be an IBM
PC-AT or compatible, running under MSDOS 3.1 or
better.

If no 16 bit slot is available, the board will also fit into an
8 bit slot. However, this may cause some degradation in
speed.

Prior to fitting, the 5 sets of jumpers on the board should
be checked and configured as required. It is likely,
however, that the factory setting will suffice. The meaning
of the jumpers is given below.

J1
1 J2 1110

ERNERERE

J4

! g

The Psy-Q PC Interface Board.

CAUTION: This board is sensitive to static electricity; hold by the metal support

bracket when handling it.

Psy-Q Development System

6 Programmer’s Guide

Super-NES

On-board J umpers

J1
J2

Select DRQ channel
Select DACK channel

For J1 and J2, left to right jumper positions represent channels 7,
6, 5. Factory setting is 7, although Adaptec SCSI defaults to 5.
Both J1 and J2 must be set to the same channel.

J3

J4

J5

Selects IRQ number.

From left to right, these are:
151200 10,7.5.

Factory setting is 15

Selects the base port address.

From left to right, these are:

300, 308, 310, 318, 380, 388, 390, 398 (hex).
Factory setting is 308.

The bottom 3 jumpers are the SCSI ID;
factory setting is 7.
The top three jumpers are reserved.

The default settings have been chosen so that the
possibility of contention with other internal boards is
minimised. Nevertheless, care should be taken that
settings on the Psy-Q board do not conflict with any other
card in the system.

Psy-Q Development System

Nintendo Chapter 1 PC Installation 7

Installing the PC Software

The Psy-Q issue diskette contains programs to perform the
following functions:

The Assembler

The Linker

The Debugger

PC Driver

Other target-specific Bios Extensions
Windows accessories

Installing Development Software

To install the Psy-Q development programs onto the host
PC, carry out the following procedure:

- create a directory on the hard disk e.g. C:\PSYQ;
- copy the contents of the issue disk to the new directory;

- add the new directory to the PATH variable in the
AUTOEXEC.BAT;

- add aline in the AUTOEXEC.BAT to automatically load
PSYBIOS.COM,;

- add a line in the AUTOEXEC.BAT to create an
environment variable "PSYQ", specifying the directory

for Psy-Q files, e.g.:

SET PSYQ = C:\PSYQ

Psy-Q Development System

8 Programmer’s Guide Super-NES

Running from Windows

The Psy-Q Development system can readily be launched
from within Windows, by performing the following:

e create a new program group using the NEW option in
the FILE menu of PROGRAM MANAGER;

e create.PIF files, using the PIF Editor, to allow programs
to run efficiently in a DOS window;

e create new program items, again using the NEW option,
for each Psy-Q facility to be run under Window;

e use CHANGE ICON... and the BROWSE facility to
select an icon from the .ICO files, supplied with the
issue disk.

Psy-Q Development System

Nintendo

Chapter 1 PC Installation

9

Description

Syntax

Options

/a

/b

/d

/i

/s

/8

PSYBIOS.COM

PSYBIOS.COM is a TSR program, which acts as a driver
for the Psy-Q interface board, installed in the host PC.

PSYBIOS

[options)

where each option is preceded by a forward slash (/) and
separated by spaces.

card address

size

channel

intnum

id

Set card address:
300, 308, 310, 318, 380, 388, 390, 398

Specify file transfer buffer size:
2 to 32 (in kilobytes)

Specify DMA channel:
5,6,7; 0 =off

Specify IRQ number:
5,7,10, 11, 12, 15; 0 = off

Specify SCSI id:
Oto7

Run in 8 bit slot mode

Psy-Q Development System

10 Programmer’s Guide Super-NES

Remarks

Examples

Normally, PSYBIOS.COM is loaded in the
AUTOEXEC.BAT; it can safely be loaded high to free
conventional memory.

If PSYBIOS is run again, with no options, the current
image will be removed from memory. This is useful if
you wish to change the options without rebooting the
PC.

If the DMA number is not specified, the BIOS will work
without DMA; however, it will be slower.

The BIOS candrive the interface in 8 bit mode; however,
this is the slowest mode of operating the interface.

The buffer size option (/b) sets the size of the buffer used
when the target machine accesses files on PC. A larger
buffer will increase the speed of these accesses;
however, more PC memory will be consumed.

PSYBIOS /a308 /d7 /i15

Start the driver, using card address 308, DMA channel 7,
interrupt vector 15; these are typical settings.

Psy-Q Development System

Nintendo

Chapter 2 - The ASM658 Assembler 11

CHAPTER 2 B

The ASM658 | g

Assembler g e =

The

ASMO658 assembler is the backbone of the powerful

Psy-Q development system; it can assemble 65816 source
code at over 1 million lines per minute. Executable image
or binary object code can be downloaded by the assembler
itself, to run in the target machine immediately, or later,
by the RUN utility.

This chapter discusses how to run an assembly session,
under the following headings:

Command Line Syntax
Running with Brief
Assembler and Target Errors
RUN.EXE - download utility

Psy-Q Development System

12 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 2 - The ASM658 Assembler 13

Command Line Syntax

During the normal development cycle, the ASM658
Assembler may be:

e run in stand alone mode;
launched from an editing environment, such as Brief -
see later in this chapter;

e invoked as part of the Make utility - see page 193.

When the Assembler is run independently, the command
line takes the following form; each component of the line
is then described:

Syntax
ASMG658 /switchlist source,object,symbols,listings,tempdata
or

ASMG658 @commandfile

If the first character on the command line is an @ sign, the string
following it signifies a Psy-Q command file containing a list of
Assembler commands.

Switches

The assembly is controlled by inclusion of a set of
switches, each preceded by a forward slash (/). The /o
switch introduces a string of assembler options; these can
also be defined in the source code, using an OPT
directive. Assembler options are described in detail on
page 142, the available switches are listed below:

Psy-Q Development System

Programmer’s Guide Super-NES

le Produce list of code in unsuccessful conditions

/d Set Debug mode - if the object code is sent to
the target machine, do not start it.

le n=x Assigns the value x to symbol n.

/g Non-global symbols will be output directly to
the linker object file.

/i While assembling, invoke the information
window.

lj pathname Nominate a search path for INCLUDE files.

/k Permits the inclusion of pre-defined foreign
conditionals, such as IFND - see also
MACROS, page 111.

n Output a file for the Psylink Linker.
/m Expand all macros encountered.
o options Specify Assembler options - see page 142 for

a full description of the available options.

p Output pure binary object code, instead of
an executable image in .CPE format - see also
RUN.EXE, page 19.

w Output EQUATE statements to the Psylink file.
Iz Output line numbers to the Psylink file.
[zd Generate source level Debug information.

Psy-Q Development System

Nintendo

Chapter 2 - The ASM658 Assembler 15

Source

Object

Symbols

Listings

Tempdata

Remarks

The file containing the source code; if an extension is not
specified, the default is .658. If this parameter is omitted,
the Assembler outputs /elp in the form of a list of
switches.

The file to which object code is written . If the object code
is to be sent directly to the target machine, specify an
filename of Tn:, where n signifies the SCSI device
number of the target. If this parameter is omitted, object
code will not be produced.

The file to which symbol information is written, for use by
the DBUG658 Debugger.

The file to contain listings generated by assembly.

This parameter nominates a file to be placed on the RAM
disk for faster access. If the name is omitted, the file will
be called ASM.TMP; note that the temporary file is
always deleted after assembly is complete.

e If any of the above parameters are omitted, the dividing
comma must still be included in the command line,
unless it follows the last parameter.

e The Assembly run may be prematurely terminated by:

- pressing Control-C;

- pressing Control-Break (recognised more
quickly because it does not require a DOS
operation to spot it);

Psy-Q Development System

16 Programmer’s Guide Super-NES

Examples

- pressing Esc, if the /i option has been
specified to invoke the Info Box (this may
be advisable with some versions of Brief
that are erratic following Control-C or
Control-Break - see page 17).

The Assembler checks for an environment variable
called ASM658. This can contain default options,
switches and file specifications, in the form of a
command line, including terminating commas for
unspecified parameters. Defaults can be overridden in
the runtime command line.

ASMG658 /zd /o ae+,w- scode,t0:,scode.sym

This command will initiate the assembly of the source
code contained in a file called SCODE.658, with the
following active options:

source level debug information to be generated;
automatic even enabled;

warning messages to be suppressed;

the resultant object code to be transferred directly to the
target machine, SCSI device 0;

symbol information to be output to a file called
SCODE.SYM;

assembly listing to be suppressed.

ASM68K @ game.pcf

will recognise the preceding @ sign and take its command
line from a Psy-Q command file called GAME.PCF.

Psy-Q Development System

Nintendo

Chapter 2 - The ASM658 Assembler 17

Running with Brief

Most programmers prefer to develop programs completely
within a single, enabling environment. Future versions of
Psy-Q will provide a self-contained superstructure with a
built-in editor, tailored to the requirements of the
assembly and debug sub-systems. For the time being,
however, it is recommended that programmers seeking
such facilities should use Borland’s Brief Editor, which is
already supported by Psy-Q.

Installation in Brief

Copy the file PSYQ.CM, containing macros, into the
\BRIEF\MACROS directory, or create it from source
file PSYQ.CB;

Set the BCxxx environment variable;

Set the BFLAGS environment variable, with -mpsyq
appended, to force the Psy-Q macro file to be loaded on
start-up;

On the next run of the Assembler or Brief, a set-up
dialogue box is output, which allows defaults to be
specified for output destination, options and switches.

Because of problems in some versions of Brief,
following a Control-C or Control-Break, it is
recommended that the /i option is used on assembly. This
will enable the Info Box, allowing Esc to be used for
premature Assembly termination.

Psy-Q Development System

18 Programmer’s Guide Super-NES

Remarks

Assembly Errors

During the assembly process, errors may be generated as
follows:

by the assembler itself, as it encounters error conditions
in the source code;

by a failure during downloading of the object code.

e Appendix A gives a full list of Assembler error
messages.

e Errors during the download normally produce an error
message, followed by an option to Retry, Bus Reset or
Abort, such as:

Target not Available
Bus not Available

plus
Abort, Retry or Bus Reset

Psy-Q Development System

Nintendo

Chapter 2 - The ASM658 Assembler 19

Description

Syntax

Remarks

RUN.EXE - program downloader

This program downloads runnable object code to the
target machine.

RUN [switches] file name [[switches] filename] ..

where switches are preceded by a forward slash (/).

e If RUN is executed without any runtime parameters, the
program will simply attempt to communicate with the
target adapter hardware. If successful, RUN displays the
target identification; if the attempt fails, an appropriate
error message is displayed.

e The file to be downloaded may contain:

- an executable image, output by the develdpment system,
in .CPE format. Up to 8 CPE files may be specified - if no
extension is specified, .CPE is assumed,;

- araw binary image of a cartridge.

e For an executable file, execution will begin as indicated
in the source code; for a binary ROM image, execution
will begin as if the target machine had been reset with a
cartridge in place.

e Multiple executable files may be specified. However,
only the last executable address will apply - specified
files are read from left to right.

Psy-Q Development System

20 Programmer’s Guide

Super-NES

/h
[t#
/ut
/m20
/m21
/f+
/f-

Examples

e The following switches are available:

Halt target - that is, download but do not run.
Use target SCSI id number #.

Use target unit number #.

Mode 20 for SNES ROM image.

Mode 21 for SNES ROM image.

Force load to SNES fast memory

Force load to SNES slow memory

RUN FORTRESS.BIN

downloads the binary image FORTRESS.BIN to the
target machine, at address #000000, and begins execution
in a cartridge, as though the machine had been reset.

RUN SOLDIER.CPE
downloads the executable file SOLDIER.CPE to the target

machine, and begins execution as indicated in the original
source code.

Psy-Q Development System

Nintendo Chapter 3 Syntax of Assembler Statements

21

CHAPTER 3

Syntax of Assembler
Statements

In order to control the running of an Assembler, source
code traditionally contains a number of additional
statements and functions. These allow the programmer to
direct the flow and operation of the Assembler as each
section of code is analysed and translated into a
machine-readable format. Normally, the format of
Assembler statements will mirror the format of the host
language, and ASM658 follows this convention.

This chapter discusses the presentation and syntax of the
ASMG658 statements, as follows:

Format of Statements
Format of Names and Labels
Constants

Functions

Operators

65816 Addressing Mode
RADIX

ALIAS and DISABLE

Psy-Q Development System

22 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 3 Syntax of Assembler Statements

23

Format of Statements

ASM658 statements are formatted as follows:
Name or Label Directive Operand
The following syntactical rules apply:

e Individual fields are delimited by spaces or tabs.

e Overlong lines can be split by adding an ampersand (&);

the next line is then taken as a continuation.

e Lines with an equals (=) sign as the first character are
considered to be the case options of a CASE statement

- see Flow Control, page 81.

e Comment Lines:

- comments normally follow the operand, and start with

a semi-colon.

- lines which consist of space or tab characters are

treated as comments.

- acomplete line containing characters other than space
or tabs is treated as a comment, if it starts with a

semi-colon or asterisk.

Psy-Q Development System

24 Programmer’s Guide Super-NES

Format of Names and Labels

Names and Labels consist of standard alpha-numeric
symbols, including upper-case letters, lower-case letters
and numeric digits:

AtoZ,atoz,0t09
In addition, the following characters can occur:

Colon (3) Can used at the end of a name or label
when defined, but not when referenced.

Question Mark (?), Underscore (_), Dot (.)
These three characters are often used to
improve the overall readability

AT sign @ Indicates the start of a local label - see
page 121 onwards. Note that, by using the
Assembler option /ln, the local label symbol
can be changed to a character other than @.

The following usage rules apply throughout:

e Numeric digits and Question Marks must not be the first
character of a name.

e Labels normally start in column 1. However, if they start
elsewhere, there must be no characters preceding the
name, except space or tab, and the last character must be
a colon.

e If a problem in interpretation is caused by the inclusion
of anon-alphanumeric character in a Name or Label, that
character can be replaced by a backslash, or the entire
Name or Label surrounded by brackets.

Psy-Q Development System

Nintendo Chapter 3 Syntax of Assembler Statements 25

Format of Constants

The ASM658 Assembler supports the following constant
types:

Character Constants

A character string enclosed in quote marks is a character
constant and is evaluated as its ASCII value. Character
constants may contain up to 4 characters, to give a 32 bit
value. Thus:

"A" =65

"AB" = (65%256)+66 = 16706

"ABC" = (65%65536) + (66%256)+67 = 4276803

"ABCD" = (65%16777216) + (66%65536) + (67*256)+68
=1094861636

Integer Constants

Integer constants are normally evaluated as decimal, the
default base, unless one of the following pertains:

e the RADIX directive changes the base - see page 37.

e §$, as the first character of an integer, signifies a Hex
number; % signifies a Binary number.

e If a character is preceded by a backslash and up arrow
(\M), the corresponding control character is substituted.

e The AN Assembler option allows numbers to be defined
as Intel and Zilog integers. That is, the number must start

with a numeric character and end with one of:

D for Decimal; H for Hexadecimal; B - Binary

Psy-Q Development System

26 Programmer’s Guide Super-NES

_year
_month
_day
_weekday
_hours
_minutes
_seconds

&

@

narg

rs

_filename

Remarks

Special Constants

The following pre-defined constants are available in
ASM658:

As a four digit number, e.g. 1995
1 = January; 12 = December

1 = 1st day of month

0 = Sunday; 6 = Saturday

00 - 23

00 - 59

00 - 59

Contains the current value of the Location Counter.
Contains the actual PC value at which the current
value will be stored - see below.

Contains the number of parameters in the current
macro argument - see page 110 for further details.

Contains the current value of RS Counter - see
page 50 for further details.

A pre-defined string containing the name of the
primary file undergoing assembly - that is, the file
specified on the ASM658 command line.

Time and Date Constants:

Time and Date constants are set to the start of assembly;
they are not updated during the assembly process.

Psy-Q Development System

Nintendo

Example

Chapter 3 Syntax of Assembler Statements 27
RunTime db "\# hours:\#_minutes:&
\# seconds"

this expands to the form ih:mm:ss, as follows
RunTime db "21:08:49"

Note that this example uses the special macro parameter,
\#, which is described on page 101.

Location Counter constants:

The current value of the program pointer can be used as a
constant. To substitute the value of the location counter at
the current position, an asterisk (*) is used:

section Bss,g bss
Firstbss equ *

Since * gives the address of the start of the line,

org $100
dl *,*,*
defines $100 three times.
An @, when used on its own as a constant, substitutes the

value of the location counter, pointing to an address at
which the current value will be stored.

org $100
dl @@ @
defines $100,$104,$108.

Psy-Q Development System

28

Programmer’s Guide

Super-NES

Name
def(a)
ref(a)
type(a)
sqrt(a)

strlen(zext)

Assembler Functions

Action

Returns true if a has been been defined
Returns true if a has been referenced
Returns the data type of a

Returns the square root of a

Returns the length of string in characters

stremp(fexta,textb) Returns true if strings match
instr([start,|txa,txb) Locate substring a in string b

sect(a)
offset(a)
sectoff(a)
group(a)
groupoff(a)

Returns the base address of section a
Returns the offset into section a
Equivalent to offset

Returns the base address of group a
Returns the offset into group a

ASMO658 offers a large number functions to ease the
programmer’s task. Several are common to other
assemblers - these are listed below, together with the page
number for a more detailed explanation of their usage. In
addition, there is a group of specialised functions, which
are described on the following pages.

Page

75
74

114

117
118
119

138
138
138
131
131

Psy-Q Development System

Nintendo Chapter 3 Syntax of Assembler Statements 29

Special Functions

filesize(" filename"')

Returns the length of a specified file, or -1 if it does not
exist.

groupsize(X)
Returns the current (nof final) size of group X.
grouporg(X)
returns the ORG address of group X, or the group in
which X is defined, if X is a symbol or section name.
groupend(X)
Returns the end address of group X.
sectend(X)
Returns the end address of section X.
sectsize(X)

Returns the current (noft final) size of section X.

Psy-Q Development System

30 Programmer’s Guide Super-NES

alignment(X)
Gives the alignment of previously defined symbol X. This
value depends upon the base alignment of the section in
which X is defined, as follows:
Longword aligned - value in range 0 -3
Word aligned - value in range 0 -1
Byte aligned - value always 0

hi(X)
Gives the high byte of X; it operates the same as the >X
function, and evaluates as (X>>8)&$FF.

lo(X)
Gives the low byte of X; it operates the same as the <X
and evaluates as X&S$FF.

mx

Returns the current MX value.

Psy-Q Development System

Nintendo Chapter 3 Syntax of Assembler Statements 31

Assembler Operators

The ASM658 Assembler makes use of the following
expression operators:

Symbol Type Usage Action

() Primary (a) Brackets of Parenthesis

+ Unary +a a is positive

- Unary -a a is negative (see Note l)

= Binary a=b Assign or equate b to a

+ Binary a+b Increment a by b

- Binary a-b Decrement a by b

& Binary a*b Multiply a by b

Binary a/b Divide a by b, giving the quotient

% Binary a%b Divide a by b, giving the modulus
<L Binary a<<b Shift a to the left, b times
>> Binary a>>b Shift a to the right, b times

~ Unary ~a Logical compliment or NOT a
& Binary a&b ais logically ANDed by b

’\ Binary a’b a is exclusively ORed by b

! Binary a'b a is inclusively ORed by b

I Binary alb Acts the same as !
< Binary a<>b ais unequal tob

< Binary a<b aislessthanb

> Binary a>b a is greater than b
<= Binary a<=b ais less than or equals b
>= Binary a>=b a is greater than or equals b

Psy-Q Development System

32 Programmer’s Guide Super-NES

Note! Since the ASM658 Assembler will evaluate 32-bit
expressions, the negation bit is Bit 31. Therefore,
$FFFFFF and $FFFFFFF are positive hex numbers;
$FFFFFFFF is a negative number

Note? If a comparison evaluates as true, the result is returned as
-1; if it evaluates as false, the result is returned is 0.

Hierarchy of Operators

Expressions in ASM658 are evaluated using the
following precedence rules:

e Parentheses form the primary level of hierarchy and
force precedence - their contents are performed first;

e Without the the aid of parentheses, operators are
performed in the order dictated by the hierarchy table;

e Operators with similar precedence are performed in the
direction of their associativity - normally, from left to
right, except unary operators.

Operator Direction Description
() — Primary

Gt gy - Unary

LE,. B> - Shift

&; LN — Logical

* 1, % - Multiplicative
+, - - Additive

> <, <=, >= —> Relational

=, <> — Equality

Psy-Q Development System

Nintendo Chapter 3 Syntax of Assembler Statements 33

65816 Addressing Modes

This section discusses some general topics pertaining to
the 65816 Addressing Modes, as follows:

Immediate Addressing

<, > and ” are additional prefix operators to follow #,
which act as in the following examples:

lda #$12 ;load accumulator with immediate
;byte/word, depending on whether it's in 8
;:or 16 bit mode

lda #<value ;load accumulator with lower byte/word of
;value, depending on whether it’s in 8 or
;16 bit mode

lda #>value ;load accumulator with middle byte/word
;of value, depending on whether it’s in 8 or
;16 bit mode

lda #"value ;load accumulator with upper byte/word of
;value, depending on whether it's in 8 or
;16 bit mode

To summarise:

Operand Value in 8 bit mode Result in 16 bit mode
#<$12345678 $78 $5678
#>$12345678 $56 $3456
#7$12345678 $34 $1234

Psy-Q Development System

34 Programmer’s Guide Super-NES

If none of the prefix operators <> or A are used, the value
specified will be loaded into the accumulator. If this
value is out of range for the current accumulator size, an
error will result, unless the truncate option (opt t+) has
been specified.

Direct Page, Absolute, Long Absolute

Specifying one of the prefixes < | and > will force the
Assembler to use the addressing mode indicated in the
examples below:

Ida
Ida

Ida
Ida

addr ;load accumulator from address

<addr ;load accumulator from address in direct
;page

|addr ;load accumulator using absolute address

>addr ;load accumulator using long absolute
;address

If address truncation (opt ta+) is in effect, the Assembler
will truncate the operand address. Otherwise, an error
will be generated if the operand address is outside the
legal range for the mode specified. For instance,

lda <$123

will result in an error.

If one of the < | or > prefixes is not specified on the
operand, the Assembler obeys the following rules to
determine which addressing mode to use - see also page
89 on the ASSUME directive:

Psy-Q Development System

Nintendo

Chapter 3 Syntax of Assembler Statements 35

O If direct page optimisation is enabled (opt od+), the

Assembler will attempt to determine whether Direct
Page Access can be used, based on the current ASSUME
value of the Direct Page Register. If Direct Page
Addressing is not legal for the specified operation, no
attempt to optimise to Direct Page Addressing will be
made.

If the Direct Page Register has no ASSUME value, or is
ASSUMEd to ?, the Assembler will use Direct Page
Addressing, if the operand is in the range 0-255
(decimal).

If the Direct Page Register is ASSUMEd to a known
value, the Assembler will use Direct Page Addressing if
the operand address is from O to 255 (decimal) greater
than this value, unless it is greater than 65535.

If the Direct Page Register is ASSUME to a section
name, the Assembler will use Direct Page Addressing if
the operand is known to be in that section, at the point
that the reference is encountered on pass 1.

If the Direct Page Register is ASSUMEd to a group
name, the Assembler will use Direct Page Addressing if
the operand is known to be in a section in that group, at
the point that the reference is encountered on pass 1.

If Direct Page Addressing cannot be used, the Assembler
will test to see whether Long Absolute Addressing
must be used. If the data bank register has no ASSUME
value, oris ASSUMEd to ?, the Assembler will use Long
Absolute Addressing if the operand is 65536 (decimal)
or greater.

Psy-Q Development System

36 Programmer’s Guide Super-NES

If the Data Bank Register is ASSUMEd to a known
value, the Assembler will use Long Absolute
Addressing if the operand address is less than the value,
or more than 65536 (decimal) greater.

If the Data Bank Register is ASSUMEAd to a section
name ,and the ORG address of that section can be found,
the Assembler will use Long Absolute Addressing if the
operand value is less than the ORG address, or more than
65536 (decimal) greater than the address.

If the Data Bank Register is ASSUMEd to a group name,
and the ORG address of that group can be found, the
Assembler will use Long Absolute Addressing if the
operand value is less than the Org address, or more than
65536 (decimal) greater than the address.

O TIf it is not necessary to use Long Absolute Addressing,
the Assembler will use Absolute Addressing.

Psy-Q Development System

Nintendo

Chapter 3 Syntax of Assembler Statements 37

Description

Syntax

Remarks

Examples

RADIX

The ASM658 Assembler defaults to a base of 10 for
integers. This may be changed by preceding individual
numbers by the characters % or $, to change the base for
that integer to binary or hex . Alternatively, the RADIX
directive can be used to change the default base.

RADIX newbase

e Acceptable values for the new base are in the range of 2
to 16.

e Whatever the current default, the operand of the RADIX
directive is evaluated to a decimal base.

e The AN assembler option (see page) will not be put into
effect if the default RADIX is greater than 10, since the
signifiers B and D are used as digits in hexadecimal
notation.

radix 8

sets the default base to OCTAL.

Psy-Q Development System

38 Programmer’s Guide Super-NES

ALIAS and DISABLE

Description These directives allow the programmer to avoid a conflict
between the reserved system names of constants and
functions, and the programmer’s own symbols. Symbols
can be renamed by the ALIAS directive and the original
names DISABLE’d, rendering them usable by the
programmer.

Syntax newname ALIAS name
DISABLE name

Remarks e Symbolic names currently known to the ASM658
Assembler may ALIASed and DISABLEd. However,
these directives must not be used to disable ASM658
directives.

Examples _Offset alias offset

disable offset
_Offset dw _Offset(Lab)
offset dw *-pointer

Psy-Q Development System

Nintendo Chapter 4 - General Assembler Directives 39

CHAPTER 4

General Assembler
Directives

Include

The ASM658 assembler provides a variety of functions
and directives to control assembly of the source code and
its layout in the target machine.

This chapter documents the Assembler directives which
allow the programmer to control the processes of
assembly, grouped as follows:

Assignment Directives

Data Definition

Controlling Program Execution
Include Files

Controlling Assembly
Handling the Target Registers

Psy-Q Development System

40 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 4 - Assignment Directives 41

Assignment Directives

The directives in this section are used to assign a value
to a symbolic name. The value may a constant, variable or
string.

EQU

SET (and =)

EQUS

RB, RW, RL and RT
RSSET

RSRESET

Psy-Q Devel’opmenl System

42

Programmer’s Guide

Super-NES

Psy-Q Development System

Nintendo

Chapter 4 - Assignment Directives

43

Description

Syntax

See Also

Remarks

EQU

Assigns the result of the expression, as a constant value,
to the preceding symbolic name.

symbol name EQU expression

SET, EQUS

e The ASM658 Assembler allows the assigned expression
to contain forward references. If an EQU cannot be
evaluated as it is currently defined, the expression will
be saved and substituted in any future references to the

equate (see Note L below).

e It is possible to include an equate at assembly time, on
the Assembler command line. This is useful for
specifying major options of conditional assembly, such

as test mode - see Assembler switches, page 13.

e Assigning a value to a symbol with EQU is absolute; an
attempt at secondary assignment will produce an error.
However, it is permissible to re-assign the current value
to an existing symbol; typically, this occurs when
subsidiary code redefines constants already used by the

master segment.

Psy-Q Development System

44 Programmer’s Guide Super-NES
Examples Length equ 4

Width equ 8

Depth equ 12

Volume equ Length*Width*Depth

DmaHigh equ $ffff8609

DmaMid equ DmaHigh+2
Note! List equ Lastentry-Firstentry

if Firstentry, Lastentry not yet defined, then:

dl

will be treated as

dl

List+2

(Lastentry-Firstentry)

the equated expression is implicitly bracketed.

+2

Psy-Q Development System

Nintendo

Chapter 4 - Assignment Directives 45

Description

Syntax

See Also

Remarks

SET

Assigns the result of the expression, as a variable, to the
preceding symbolic name.

symbol name SET expression
symbol name = expression
EQU

e The ASM658 Assembler does not allow the assigned
expression in a SET directive to contain forward
references. If a SET cannot be evaluated as it is currently
defined, an error is generated.

e If the symbol itself is used before it is defined, ASM658
generates a warning, and assigns the value determined
by the preliminary pass of the Assembler.

e The symbol in a SET directive does not assume the type
of the operand. It is, therefore, better suited to setting
local values, such as in Macros, rather than in code with
a relative start position, such as a SECTION construct,
which may cause an error.

Psy-Q Development System

46 Programmer’s Guide Super-NES
Examples Loopcount set 0
GrandTotal = SubTotalA+SubTotalB
xdim set Bsize<<SC
cbb macro string
Ic = 0
rept strlen(\string)
cc substr Ic+1,lc+1,\string
db \cc'M$A5+lc)
Ic = lc+1
endr
endm

Psy-Q Development System

Nintendo

Chapter 4 - Assignment Directives

47

Description

Syntax

See Also

Remarks

EQUS

Assigns a text or string variable to a symbol.

symbol name EQUS "text"
symbol name EQUS "text’
symbol name EQUS symbol name

EQU, SET

Textual operands are delimited by double or single
quotes. If it is required to include a double quote in the
text string, delimit with single quotes or two double
quotes; similarly, to include a single quote in the text,
delimit with double quotes or two single quotes - see
examples below.

If delimiters are omitted, the Assembler assumes the
operand to be the symbol name of a previously defined
string variable, the value of which is assigned to the new
symbol name.

Point brackets, { and }, are special delimiters used in
Macros - see MACRO directive specification, page 101.

Symbols equated with the EQUS directive can appear at
any point in the code, including as part of another text
string. If there is the possibility of confusion with the
surrounding text, a backslash (\) may be used before the
symbol name, and, if necessary, after it, to ensure the
expression is expanded correctly - see examples below.

Psy-Q Development System

48 Programmer’s Guide Super-NES

Examples Program equs "Psy-Qv 1.2"
Qtex equs "What's the score?"
db "Remember to assemble &
_filename",0
z equs "123"
dI z+4

converts to
dl 123+4

whereas the following expression needs backslashes to be
expanded correctly:

dl number\z\a
converts to

dl numberi123a
SA ~equs ‘StartAddress’

dl \SA\4
converts to

dl StartAddress4

Psy-Q Development System

Nintendo

Chapter 4 - Assignment Directives 49

To include single quotes in a string delimited by single
quotes, either change the delimiters to double quotes, or
double-up the internal single quote. Similarly, this syntax
applies to double quotes, as follows:

Sinquote equs "What”s the point?’
Sinquot2 equs "What'’s the point?"
Doubquote equs "Say ""Hello"" and go"
Doubquote equs "Say "Hello" and go’

Psy-Q Development System

50 Programmer’s Guide

Super-NES

Description

Syntax

See Also

Remarks

RB, RW, RL and RT

These directives assign the value of the

RS variable to

the symbol, and advances the s counter by the specified
number of bytes.

symbol name RB
symbol name RW
symbol name RL
symbol name RT
RSSET, RSRESET

count

count

count

count

e These directives, together with the following two
associated directives, operate on or with the RS

variable, which contains the current offset.

e The directives RB, RW and RL will allocate one, two
and four bytes respectively; the RT directive will

allocate three bytes.

Psy-Q Development System

Nintendo Chapter 4 - Assignment Directives 51
Examples rsreset

Icon_no rb 2

Dropcode rw 1

Actcode rw 1

Actname rb 10

Objpos rl 1

Errcode rt 2

Artlen rb 0

After each of the first six RS equates, the RS pointer is
advanced; the values for each equate are as follows:

Icon_no 0 (set to zero by RSRESET)

Dropcode 2
Actcode 4
Actname 6
Objpos 16
Errcode 20
Artlen 26

The last rb does not advance the RS pointer, since it is
equivalent to:

artlen equ _RS

Psy-Q Development System

52 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

Examples

RSSET

Assigns the specified value to __ RS variable.

RSSET value

RS, RSRESET

e This directive is normally used when the offsets are to
start at a value other than zero.

See the RS directives

Psy-Q Development System

Nintendo

Chapter 4 - Assignment Directives 53

Description

Syntax

See Also

Remarks

Examples

RSRESET

Sets the __ RS variable to zero.

RSRESET [value]

RS, RSSET

e Using this directive is the normal way to initialise the
__RS counter at the start of a new data structure.

e The optional parameter is provided for compatibility

with other assemblers; if present, RSRESET behaves
like the RESET directive.

See the RS directives

Psy-Q Development System

54 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 4 - Data Definition 55

Data Definition

The directives in this section are used to define data and
reserve space.

DB, DW, DL and DT

DCB, DCW, DCL and DCT
DS

HEX

DATA

DATASIZE

IEEE32

IEEE64

Psy-Q Development System

56 Programmer’s Guide Super-NES

DB, DW, DL and DT

Description These directives evaluate the expressions in the operand
field, and assigns the results to the preceding symbol, in
the format specified by the second character of the
directive. Argument expressions may be numeric values,
strings or symbols.

Syntax symbol name DB expression,expression
symbol name DW expression,expression
symbol name DL expression,expression
symbol name DT expression,expression
See Also DCB, DCW, DCL, DCT
Remarks e Textual operands are delimited by double or single

quotes. If it is required to include a double quote in the
text string, delimit with single quotes or two double
quotes; similarly, to include a single quote in the text,
delimit with double quotes or two single quotes - see
examples below. If delimiters are omitted, the
Assembler expects the operand to be the symbol name
of a previously-defined string variable, the value of
which is assigned to the new symbol name.

e The DB, DW and DL directives operate to units of one,
two and four bytes respectively; the DT directive uses
units of three bytes.

Psy-Q Development System

Nintendo Chapter 4 - Data Definition 57
Examples Hexvals dw $80d,$208,0,$80d,0
Coords dw -15,46
Pointers dl StartMarker,EndMarker
ErrorMes db "File Error",0
Notes While some assemblers truncate a parameter that is

out-of-range, ASM658 flags an error; all of the following
will produce errors: ’

db 257

db -129
dw 66000
dw -33000

Psy-Q Development System

58 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

Examples

DCB, DCW, DCL and DCT

These directives generate a block of memory, of specified

length, containing the specified value.

DCB lengthvalue

DCW length,value

DCL length,value

DCT length,value
DB, DW, DL, DT

e The DCB, DCW and DCL directives generate memory
blocks in units of one, two and four words respectively;
the DCT directive generates units of three words.

dcb 256,$7F

generates 256 bytes containing $7F .

dew 64,$FF

generates 64 words containing $FF.

Psy-Q Development System

Nintendo

Chapter 4 - Data Definition 59

Description

Syntax

Remarks

Examples

DS

Allocates memory to the symbol, of the specified length,
and initialises it to zero.

symbol name DS length

e The DS directive reserves memory blocks to a unit of
one byte.

e If the DS directive is used to reserve space in a
Group/Section with the BSS attribute, the reserved area

will rot be initialised - see Groups and Sections, page
131.

List ds 64
reserves an area 64 bytes long, and sets it to zero.
Buffer ds 1024

reserves a lk bytes area, and sets it to zero.

Psy-Q Development System

60 Programmer’s Guide Super-NES

HEX

Description This directive takes a list of unsigned hex nibble pairs as
an argument, which are concatenated to give bytes. It is
intended as a quick way of inputting small hex

expressions.
Syntax symbol name ~ HEX hexlist
See Also INCBIN
Remarks Data stored as HEX is difficult to read, less

memory-efficient and causes more work for the
Assembler. Therefore, it is suggested that the HEX
statement is used for comparatively minor data definitions
only. To load larger quantities of data, it is recommended
that the data is stored in a file, to be INCLUDEd as a
binary file at runtime - see Include Files, page 72.

Examples HexString hex 100204FF0128
is another way of writing

HexString db $10,$02,$04,$FF,$01,$28

Psy-Q Development System

Nintendo Chapter 4 - Data Definition 61

DATASIZE and DATA

Description Together, these directives allow the programmer to define
values between 1 and 256 bytes long (8 to 2048 bits). The
size of the DATA items must first be defined by a

DATASIZE directive.
Syntax DATASIZE size
DATA value, value

where value 1s a numeric string, in hex or decimal,
optionally preceded by a minus sign.

See Also IEEE32, IEEE64

Remarks e If avalue specified in the DATA directive converts to a
value greater than can be held in size specified by
DATASIZE, the ASM658 assembler flags an error.

Examples datasize 8
data $123456789ABCDEFO
data 1 SFFFFEEEFEFEE

Psy-Q Development System

62 Programmer’s Guide Super-NES

IEEE32 and IEEE64

Description These directives allow 32 and 64 bit floating point
numbers to be defined in IEEE format.

Syntax IEEE32 fp.value
IEEE64 fp.value

See Also DATA, DATASIZE

Examples ieee3?2 1.23,34e10

ieee64 123456.7654321e-2

Psy-Q Development System

Nintendo Chapter 4 - Controlling Program Execution 63

Controlling Program Execution

The directives in this section are used to alter the state of
the program counter, and control the execution of the

Assembler.

e ORG

e CNOP

e OBJ

e OBJEND

Psy-Q Development System

64 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

ORG

The ORG directive informs the Assembler of the location
of the code in the target machine.

ORG address[parameter]

where address is a previously-defined symbol, or a hex or
decimal value, optionally preceded by a question mark (?)
and followed by a (target-specific) numeric parameter.

OBJ, OBJEND, GROUP, SECTION

e Iflink file is output, the ORG directive must not be used
- see Groups and Sections, page 131.

e If the program contains SECTION:S, a single ORG is
allowed, and it must precede all SECTION directives.
If the program does not utilise the SECTION construct,
it may contain multiple ORG’s.

e The ORG operand can be preceded by a question mark,
to indicates the amount of RAM required by the
program. However, the ORG ? function only works on
machines with operating systems to allocate the
memory; for instance, it will work on the Amiga but not
the SNES or Sega Mega Drive.

Psy-Q Development System

Nintendo Chapter 4 - Controlling Program Execution 65
Examples org $100
Begin lda #%00000011
sta $4300
Ida #$21
sta $4301
Program equ $4000
.o“rg Program

Psy-Q Development System

66 Programmer’s Guide Super-NES

Description

Syntax

Remarks

Examples

CNOP

Resets the program counter to a specified offset from the
specified size boundary.

CNOP offset,size boundary

e In code containing SECTIONs, the ASM658
Assembler does not allow the program counter to be
reset to a size boundary greater than the alignment
already set for that section. Therefore, a CNOP
statement, with a size boundary of 2, is not allowed in a
section that is byte-aligned.

section.] prime

Firstoff = 512
Firstsize = 2
6ﬁop Firstoff,Firstsize

sets the program counter to 512 bytes above the next word
boundary.

Psy-Q Development System

Nintendo

Chapter 4 - Controlling Program Execution 67

Description

Syntax

See Also

Remarks

Examples

OBJ and OBJEND

OBJ forces the code following it to be assembled as if it
were at the specified address, although it will still appear
following on from the previous code. OBJEND
terminates this process and returns to the ORG’d address
value.

OBJ address

OBJEND

ORG

e The OBJ - OBJEND construct is useful for code that
must be assembled at one address (for instance, in a
ROM cartridge), but will be run at a different address,
after being copied there.

e Code blocks delimited by OBJ - OBJEND cannot be
nested.

org $100
di ¥
di *
obj $200

Psy-Q Development System

68 Programmer’s Guide Super-NES

dl *
dl &
objend

dl *
dl *

The above code will generate the following sequence of
longwords, starting at address $100:

$100
$104
$200
$204
$110
$114

Psy-Q Development System

Nintendo Chapter 4 - Include Files 69

Include Files

The source code for most non-trivial programs is too large
to be handled as a single file. It is normal for a program to
be constructed of subsidiary files, which are called
together during the assembly process.

The directives in this section are used to collect together
the separate source files and control their usage; also
discussed are operators to aid the control of code to be
assembled from INCLUDEGA files.

INCLUDE
INCBIN
DEF

REF

Psy-Q Development System

70 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

Examples

INCLUDE

Informs the ASM658 assembler to draw in and process
another source file, before resuming the processing of the
current file.

INCLUDE filename
where filename is the name of the source file to be
processed, including drive and path identifiers - see

Note . The filename may be surrounded by quotes, but
they will be ignored.

INCBIN

e Traditionally, there will be one main file of source code,
which contains INCLUDE’s for all the other files.

e INCLUDECJ files can be nested.

e The /j switch can be used to specify the search path for
INCLUDEC files - see Assembler Options, page 142.

A typical start to a program may be:

section short1

codestart jmp entrypoint
db _hours, _minutes
db _day,_month
dw _year

Psy-Q Development System

N()te1

Nintendo Chapter 4 - Include Files 71
include vars1.658
section short2
include vars2.658
section code
include graph1.658
include graph2.658
include maths.658
include trees.658
include tactics.658

entrypoint Ida #%00000011
sta $4300
Ida #$21
sta $4301

Since a path name contains backslashes, the text in the
operand of an INCLUDE statement may be confused
with the usage of text previously defined by an EQUS
directive. To avoid this, a second backslash may be used,
or the backslash may be replaced by a forward slash

(solidus).

Thus,
include

may be written as
include
or

include

d:\source\levels.asm

d:\\source\\levels.asm

d:/source/levels.asm

Psy-Q Development System

72 Programmer’s Guide

Super-NES

Description

Syntax

See Also

Remarks

INCBIN

Informs the ASM658 Assembler to draw in and process
binary data held on another source file, before resuming
processing of the current file.

symbol INCBIN filename

- filename is the name of the source file to be processed,

including drive and path identifiers - see Note .
Optionally, the filename may be surrounded by quotes,
which will be ignored.

start, length are optional values, allowing selected
portions of the specified file to be included - see Note J

INCLUDE, HEX

This directive allows quantities of binary data to be
maintained in a separate file and pulled into the main
program at assembly time; typically, such data might be
character movement strings or location co-ordinates.
The Assembler is passed no information concerning the
type and layout of the incoming data. Therefore,
labelling and modifying the incoming data are the
responsibility of the programmer.

The /j switch can be used to specify the search path for
INCLUDEC files - see Assembler Options, page 142.

Psy-Q Development System

Nintendo

Chapter 4 - Include Files 73

Examples

Note1

Note2

Charmove incbin "d:\source\charmove.asm"

Since a path name contains backslashes, the text in the
operand of an INCBIN statement may be confused with
the usage of text previously defined by an EQUS
directive. To avoid this, a second backslash may be used,
or the backslash may be replaced by a forward slash
(solidus).

Thus,
incbin d:\source\theme.asm

may be written as
incbin d:\\source\\theme.asm
or

incbin d:/source/theme.asm

The nominated file may be accessed selectively, by
specifying a position in the file, from which to start
reading, and a length. Note that:

- if start is omitted, the INCBIN commences at the
beginning of the file;

- if the length is omitted, the INCBIN continues to the end
of the file; e

- if both start and length are omitted, the entire file is
INCBINed.

Psy-Q Development System

74 Programmer’s Guide Super-NES

Description

Syntax

Remarks

Examples

REF

REF is a special operator, to allow the programmer to
determine which segments of code are to be INCLUDEA.

[~IREF (symbol)

The optional, preceding tilde is synonymous with NOT.

REF is TRUE if a reference has previously been
encountered for the symbol in the brackets.

if ref(Links)
Links lda #%00000011

rts

endif

The Links routine will be assembled if a reference to it has
already been encountered.

Psy-Q Development System

Nintendo Chapter 4 - Include Files 75

DEF

Description Like the REF operator, DEF is a special function. It
allows the programmer to determine which segments of
code have already been INCLUDEd.

Syntax [~IDEF (symbol)

The optional, preceding tilde is synonymous with NOT.

Remarks DEF is TRUE if the symbol in the brackets has previously
been defined.

Examples if ~def(load_addr)
load_addr equ $1000
exec_addr equ $1000
reloc_addr equ $80000-$300

endc

The address equates will be assembled if load addr has
not already been defined.

Psy-Q Development System

76 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter4 - Assembly Flow Control 77

Assembly Flow Control

The following directives give instructions to the ASM658
assembler, during the assembly process. They allow the
programmer to select and repeat sections of code:

END

IF
ELSE
ELSEIF
ENDIF
CASE
ENDCASE
REPT
ENDR
WHILE
ENDW
DO
UNTIL

Psy-Q Development System

78 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

Examples

END

The END directive informs the Assembler to cease its
assembly of the source code.

END [address]

REGS

e The inclusion of this directive is mostly cosmetic, since
the Assembler will cease processing when the input
source code is exhausted.

e The optional parameter specifies an initial address for
the program. See also the REGS statement, in the
section - Handling the Target Registers, page 99.

startrel Ida #%00000011
jmp progad
end startrel

Psy-Q Development System

Nintendo Chapter4 - Assembly Flow Control 79

IF, ELSE, ELSEIF, ENDIF, ENDC

Description These conditional directives allow the programmer to
select code for assembly.

Syntax IF [~]expression
ELSE
ELSEIF [~]expression
ENDIF
ENDC
See Also CASE
Remarks e The ENDC and ENDIF directive are interchangeable.

e If the ELSEIF directive is used without a following
expression, it acts exactly the same as an ELSE
directive.

e The optional tilde, preceding the operand expression, is
synonymous with NOT. Its use normally necessitates
the prudent use of brackets to preserve the sense of the
expression.

Psy-Q Development System

80 Programmer’s Guide

Super-NES

Examples

if TargetA
sec_dir equ 2

elseif " TargetB
sec_dir equ 1

else
sec_dir equ 3

endif

if ~usesquare
round macro

Ida \1

éhdm

elseif
round macro

endm

endc

Psy-Q Development System

Nintendo

Chapter4 - Assembly Flow Control 81

Description

Syntax

See Also

Remarks

Examples

CASE and ENDCASE

The CASE directive is used to select code in a
multiple-choice situation. The CASE argument defines
the expression to be evaluated; if the argument(s) after the
equals sign are true, the code that follows is assembled.
The equals-question mark case is selected if no previous
case is true.

CASE expression
=expression|,expression|
=?

ENDCASE

IF

e In the absence of a equals-question mark (=?) case, if

the existing cases are unsuccessful, the case-defined
code is not assembled.

Version equ Live
case Version
=Test,Demo
Ida #%$21
sta $4301
jsr SetPLevel
rts

Psy-Q Development System

82 Programmer’s Guide Super-NES

=Live
Ix #Tstack
Jmp Setlevels
=?
inform 3,"Unknown Version"
endcase

The following is an alternative for the example listed
under the IF directive - see page 79:

Target equ TargetA
case Target
=TargetA
sec_dir equ 2
=TargetB
sec_dir equ 1
=? db "New Version",0
sec_dir equ 3
endcase

Psy-Q Development System

Nintendo

Chapter4 - Assembly Flow Control 83

Description

Syntax

See Also

Remarks

Examples

REPT, ENDR

These directives allow the programmer to repeat the code
between the REPT and ENDR statements. The number of
repetitions is determined by the value of count.

REPT count

ENDR
DO, WHILE

e When used in a Macro, REPT is frequently associated
with the NARG function.

rept 12

dw 0,0,0,0

endr
cbb macro string
Ic = 0

rept strlen(\string)
ce substr Ic+1,lc+1,\string

db "\cc"N$A5+c)
Ic = lc+1

endr

endm

Psy-Q Development System

84 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

Examples

Note1

WHILE, ENDW

These directives allow the programmer to repeat the code
between the WHILE and ENDW statements, as long as
the expression in the operand holds true.

WHILE expression
ENDW
REPT, DO
e Currently, any string equate substitutions in the WHILE
expression take place once only, when the WHILE loop

is first encountered - see Note1 below for the
ramifications of this.

MultP equ 16

Indic = MultP
while Indic>1
Ida #$8f
sta $2100
stz $420c

Indic = Indic-1
endw

e Because string equates are only evaluated at the start of
the WHILE loop, the following will not work:

S equs X"
while strlen("\s") < 4
db "s",0

s equs "\s\x"
endw

Psy-Q Development System

Nintendo Chapter 4 - Assembly Flow Control

To avoid this, set a variable each time round the loop to
indicate that looping should continue:

S equs "X

looping = -1
while looping
db "\s",0

S equs "\s\x"

looping = strlen("s") < 4
endw

Psy-Q Development System

86 Programmer’s Guide

Super-NES

Description

Syntax

See Also

Remarks

Examples

DO, UNTIL

These directives allow the programmer to repeat the code
between the DO and UNTIL statements, until the
specified expression becomes true.

DO

ﬁNTIL expression

REPT, WHILE

Unlike the WHILE directive, string equates in an UNTIL
expression will be re-evaluated each time round the loop.

MultP equ

Indic e
do
Ida
sta

Indic =
until

16
MultP

#$8f
$2100

Indic-1
Indic<=1

Psy-Q Development System

Nintendo

Chapter 4 - Register Handling Directives

87

Register Handling Directives

These directives allow the ASM658 Assembler to
optimise access to variables and extend the options
available when handling 65816 registers:

The following directive allows the programmer to specify

ASSUME
PROC
ENDP
LABEL
CALL
JUMP
LONGA
LONGI
MX
PUSHA
POPA

certain initial parameters in the target machine:

REGS

Psy-Q Development System

88 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 4 - Register Handling Directives 89

Description

Syntax

Remarks

ASSUME

The ASSUME statement allows the assembler to optimise
access to the programs variables.

ASSUME register:value{ register:value}
e Valid registers are :
D Direct Page Register

DB Data Bank Register

e The value can be :

? Register value not known

value Register contains specified value

section name Register points at the base of the specified
section

group name Register points at the base of the specified
group

e More than one assume can be specified by separating the
values by commas; for example:

assume d:sect1,db:group1

where Direct Page points to base of sectl, Data Bank
points to base of groupl.

Psy-Q Development System

90 Programmer’s Guide Super-NES

e If the Direct Page Register value is known, the
Assembler can automatically generate direct page
references:

assume d:$300
Ida $323

will generate a reference to direct page location $23.
If variable ’var’ is in section ’sect1’, then:

assume db:sectl
Ida var

will generate an absolute reference to ’var’
e It is always possible to force a particular type of

addressing mode by using the < | and > prefixes on
the operand.

e The Assembler has no way of checking that the values
specified in the ASSUME statement are correct.

Psy-Q Development System

Nintendo Chapter 4 - Register Handling Directives 91

PROC, ENDP

Description The Assembler and Linker have the facility to check that
various registers are set to the required values when a
subroutine is called, or a label is jumped to. This is
achieved by use of the PROC and ENDP directives.

Syntax label PROC [option{,option}]
ENDP
See also MX
Remarks e Thelabel must be present, as the name of the subroutine.

e More than one option can be specified, if separated by
commas. The following options are available :

near Subroutine is to be called by JSR, not JSL

far Subroutine is to be called by JSL, not JSR
mx:value Values of the M and X bits of the status register
d:value Value in the Direct Page Register

db:value Value in the Data Bank Register

- The values for the mx option can be 0, 1, 2 or 3, as in the
MX statement (see page 96).

- The values for the Direct Page Register are the same as
can be specified in an ASSUME statement (see page 89).

Psy-Q Development System

92 Programmer’s Guide Super-NES

The values for the Data Bank Register are the same as can
be specified in an ASSUME statement.

e Atthe PROC statement, the Assembler saves the current
MX values, together with the currently assumed values
for the Data Bank and Direct Page Registers. It then sets
these values to those specified in the PROC statement.
Any options that are unspecified will be left unchanged.

e At the ENDP statement, the MX value, the Data Bank
and Direct Page ASSUME values will be restored.

e PROCs may be nested. The Assembler will check that
the appropriate type of return instruction is used inside
aPROC. If a PROC is specified as near, the Assembler
will give a warning if an RTL instruction is used.

Psy-Q Development System

Nintendo

Chapter 4 - Register Handling Directives

Description

Syntax

See also

Remarks

93

LABEL

A LABEL statement is similar to a PROC statement
except that it does not save the current states of the MX
value, the Data Bank or Direct Page Registers. There is
no corresponding endlabel statement.

label LABEL [option{,[option]}]

PROC

The label statement will normally be used for alternative
entry points into subroutines; frequently, therefore,
there are no options specified. If options are included,
they take the same form as for the PROC directive.

The LABEL statement notes the current settings of the
MX value, together with the Data Bank and Direct Page
Registers, and whether it is in a near or far callable
subroutine. When the LABEL statement is called, these
values will be checked against those that are currently
set.

Psy-Q Development System

94 Programmer’s Guide Super-NES

Description

Syntax

Remarks

CALL, JUMP

In order that the Assembler can check that registers
contain the appropriate values, a CALL statement must be
used to access the subroutine.

CALL subroutine

JUMP subroutine

The assembler will check that the MX value, and the
values of the Data Bank and Direct Page Registers, are
as specified in the PROC statement. If any do not
correspond, an error will be generated.

If an option is not specified in the PROC statement, no
check will be made for that value.

If either the Data Bank or Direct Page Register was
specified as ? (unknown value),no check will be made
on that register. Note that, other than as a result of rep
and sep instructions, the Assembler cannot check that
values specified in ASSUME and MX statements are
actually correct.

If a subroutine is called which is already defined, the
Assembler will generate a jsr or jsl instruction, as
appropriate, as long as a near or far option was specified
in the PROC statement. If the subroutine is not yet

Psy-Q Development System

Nintendo

Chapter 4 - Register Handling Directives 95

defined, or if no near or far option was specified, the
Assembler will normally generate a jsr instruction. This
can be overridden by specifying Long or Word Absolute
Addressing in the CALL statement:

call >sub1
call |sub1
If the subroutine has the near or far options specified,

it will still check that the appropriate addressing mode
has been used, and give an error if not; for instance:

Sub1 proc near
éﬁdp
call >Sub1

will give an error on the CALL statement.

The JUMP statement is similar to the CALL statement;
the same checks are performed but either a jmp or jml
instruction will be generated.

Psy-Q Development System

96 Programmer’s Guide Super-NES

LONGA, LONGI, MX

Description These statements allow the Assembler to be informed of
the current size of the Accumulator and Index Registers,
so that it can generate immediate operands of the correct

size.
Syntax MX value
LONGA onjoff
LONGI onjoff
Remarks e The value of the MX statement specifies the settings of
the M and X bits in the- Processor Status Register.
Possible values are :
0 Accumulator and Index Registers are all 16 bits
1 Accumulator is 16 bits, Index Registers are
both 8 bits
2 Accumulator is 8 bits, Index Registers are both
16 bits
3 Accumulator and Index Registers are all 8 bits
e LONGA and LONGI take the following values:
LONGA ON Accumulator is 16 bits

LONGA OFF Accumulator is 8 bits

LONGI ON

Index Registers are 16 bits

LONGI OFF Index Registers are 8 bits

The Assembler will also note changes to the sizes of the
registers when rep and sep instructions are used,
although this is only done if the operand value can be
evaluated on the first pass.

Psy-Q Development System

Nintendo Chapter 4 - Register Handling Directives 97

e The current MX value can be accessed by referring to
the _mx variable. e.g.

if __mx&1 ;ifindex registers
;are 8 bit

endif

Psy-Q Development System

98 Programmer’s Guide Super-NES

Description

Syntax

Example

PUSHA, POPA

These directives allow the current ASSUME settings, for
the Direct Page and Data Bank Registers, to be saved and
restored.

PUSHA

POPA

pusha ; save current settings
assume db:$7e

popa ; restore old values

Psy-Q Development System

Nintendo

Chapter 4 - Register Handling Directives 99

Description

Syntax

Remarks

REGS

If a CPE file is produced, or object code sent directly to
the target machine, the REGS directive specifies the
values of the registers, at the start of code execution.

REGS regcode=expression|,regcode=expression)

where regcode is the mnemonic name of a register, as
follows:

The Accumulator

Index Register X

Index Register Y

The Stack Pointer
Processor Status Register
The Program Counter
Direct Page Register
Data Bank Register

g g
B R B

AW,
os}

e This feature cannot be used if machine specific
relocatable code is produced, or code in pure binary
format.

Psy-Q Development System

100 Programmer’s Guide Super-NES

Examples regs s=$2700
regs pc=entrypoint
A typical use for this directive is to set the Program

Counter to the address for the start of execution, and the
corresponding value of the stack.

Psy-Q Development System

Nintendo

Chapter 5 - Macros 101

CHAPTER 5

Macros

MR o

/

Muagro,
Macro
REGKS

The ASM658 assembler provides the programmer with
extensive macro facilities. Macros allow the programmer
to assign names to complete code sequences. They may
then be used in the main program like existing assembler
directives.

This chapter discusses the following topics, directives and
functions:

MACRO, ENDM
MEXIT

Macro Parameters
SHIFT, NARG
MACROS
PUSHP, POPP
PURGE

TYPE

Psy-Q Development System

102 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 5 - Macros 103

Description

Syntax

See Also

Remarks

MACRO, ENDM, MEXIT

A macro consists of the source lines and parameter place
markers between the MACRO directive and the ENDM.
The label field is the symbolic name by which the macro
is invoked; the operand allows the entry of a string of
parameter data names.

When the assembler encounters a directive consisting of
the label and optional parameters, the source lines are
pulled into the main program and expanded by
substituting the place markers with the invocation
parameters. The expansion of the macro is stopped
immediately if the assembler encounters a MEXIT
directive.

Label MACRO [symbol,..symbol]
MEXIT
ENDM

MACROS

e Control structures within macros must be complete.
Structures, started in the macro, must finish before the
ENDM; similarly, a structure started externally must not
be terminated within the macro. To imitate a simple
control structure from another assembler, a short macro
might be used - see MACROS, page 111.

Psy-Q Development System

104 Programmer’s Guide Super-NES

Examples remove macro
dw -2,0,0
endm

Form macro

if stremp(\1°,’0)
dw 0

else

dw \1-FormBase
endif

endm

Psy-Q Development System

Nintendo

Chapter 5 - Macros 105

Parameters

Example

Macro Parameters

Macro parameters obey the following rules:

The parameters listed on the macro invocation line may
appear at any point in the code declared between the
MACRO and ENDM statements. Each parameter is
introduced by a backslash (\); where this may be
confused with text from an EQUS, a backslash may also
follow the parameter.

Up to thirty two different parameters are allowed,
numbered \0 to \31.

Instead of the \0 to \31 format, parameters can be given
symbolic names, by their inclusion as operands to the
MACRUO directive. The preceding backslash (\) is not
mandatory; however, if there is the possibility of
confusion with the surrounding text, a backslash may be
used before the symbol name, and, if necessary, after it,
to ensure the expression is expanded correctly:

Position macro A,B,C,Pos,Time
dsw \Time*(\A*\Pos,\B*\Pos,\C*\Pos)
endm

Surrounding the operand of an invoked macro with
greater than and less than signs (<...>), allows the use
of comma and space characters. This does not apply to
assemblers which use angle brackets as address mode
specifiers, such as ASM658; in these instances,
backward single quote is used:

Psy-Q Development System

106 Programmer’s Guide Super-NES

Example Credits macro
dw \1)\2
db \3
do 0
endm

Credits 11,10,'Psy-Q, by Psygnosis’

e Continuation Lines - when invoking a macro, it is
possible that the parameter list will become overlong. As
with any directive statement, the line can be terminated
by an ampersand (&) and continued on the next line to
improve readability.

Example chstr macro
rept narg
db k_\
shift
endr
do 0
endm

cheatstring chstr i,c,a,nb,arely,&
s,t,a,n,d,i,t

Psy-Q Development System

Nintendo

Chapter 5 - Macros 107

Special Parameters

There are a number of special parameter formats available
in macros, as follows:

Converting Integers to Text

Example

The parameters \# and \$ replace the decimal (#) or hex
($) value of the symbol following them, with its character
representation. Commonly, this technique is used to
access Run Date and Time:

RunTime db "W hours:\# minutes:&
\# seconds"
this expands to the form Ah:mm:ss, as follows

RunTime db "21:08:49"

Generating Unique Labels

Example

The parameter \@ can be used as the last characters of a
label name in a macro. When the macro is invoked, this
will be expanded to an underscore followed by a decimal
number; this number is increased on each subsequent
invocation to give a unique label.

Init macro

ent\@
Idx \,y
bpl ent\@

Psy-Q Development System

108 Programmer’s Guide Super-NES

Idy #0
bra ent2\@
set2\@ Ida \2+1,y
sta >$004200,x
iny
iny
ent2\@ Idx \1y
bpl set2\@
endm
Init initregs21,initregs42

Each time the /nit macro is used, new labels in the form
ent_001, ent2_001 and set2_001 will be generated.

Entire Parameter

Examples

If the special parameter\ _(backslash underscore) is
encountered in a macro, it is expanded to the complete
argument specified on the macro invocation statement.

All macro
db N
endm
Al 1,2,3.4

will generate

db 1,234

Psy-Q Development System

Nintendo

Chapter 5 - Macros 109

Control Characters

The parameter \'x, where x denotes a control character,
will generate the specified control character.

Using the Macro Label

The label heading the invocation line can be used in the
macro, by specifying the first name in the symbol list of
the MACRO directive to be an asterisk (*), and
substituting * for the label itself. However, the resultant
label is not defined at the current program location.
Therefore, the label remains undefined unless the
programmer gives it a value.

Extended Parameters

Example

The ASM658 Assembler accepts a set of elements,
enclosed in curly brackets ({ }), to be passed to a macro
parameter. The NARG function and SHIFT directive can
then be used to handle the list - see also page 110:

cmd macro
cc equs {\1}
rept narg(cc)
\cc
shift cC
endr
endm

Psy-Q Development System

110 Programmer’s Guide Super-NES

SHIFT, NARG

Description These directives cater for a macro having a variable
parameter list as its operand. The NARG symbol is the
number of arguments on the macro invocation line; the
SHIFT directive shifts all the arguments one place to the
left, losing the leftmost argument.

Syntax directive NARG
SHIFT

where NARG is a reserved, predefined symbol.

See Also Extended Parameters

Examples routes macro
rept narg
if strcmp(\1°,’0°)
dw 0
else
dw \1-routebase
endif
shift
endr
endm

.réutes 0,gosouth_1

Psy-Q Development System

Nintendo

Chapter 5 - Macros 111

Description

Syntax

See Also

Remarks

Examples

MACROS

The MACROS directive allows the entry of a single line
of code, as a macro, with no associated ENDM directive.
The single line of code can be a control structure directive.

Label MACROS [symbol,..symbol|

MACRO

e The MACROS directive may be used to stand in for a
single, complex code line. Often, the short macro allows
the programmer to synthesise a directive from another
assembler. Including the /k option on the ASM658
command line, will cause several macros which emulate
foreign directives to be generated.

if
boom macros
beq
else
boom macros
lda

endif

0

noboom

#blowup-tactbase,&
slot_tactic(\1)

Psy-Q Developmeht System

112 Programmer’s Guide Super-NES

PUSHP, POPP

Description These directives allow text to be pushed into, and then
popped from, a string variable.

Syntax PUSHP string
POPP string

Remarks There is no requirement for the PUSH and corresponding
POPP directive to appear in the same macro.

Examples ithid macro

dw ibvis
dw \1
pushp "\@"
dw \@-2-*
endm

ifnot macro
popp lab
goto \@
pushp "@"

\lab
endm

Psy-Q Development System

Nintendo

Chapter 5 - Macros 113

Description

Syntax

Remarks

Examples

PURGE

The PURGE directive removes an expanded macro from
the symbol table and releases the memory it occupied.

PURGE

macroname

If it is required to redefine a macro, it is not necessary to
purge it first. If an existing macro is redefined, the original
definition is purged by the Assembler first.

HugeM macro
dw

endm

HugeM

purge

\1
\31

paral,103,faultlevel,&
40,50,para31
HugeM

Psy-Q Development System

114 Programmer’s Guide Super-NES

Description

Syntax

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit 10
Bit 11
Bit 12
Bit 13

TYPE

TYPE is a function to provide information about a
symbol. It is frequently used with a Macro to determine
the nature of its parameters. The value is returned as a
word; the meanings of the bit settings are given below.

TYPE(symbol)

The reply word can be interpreted as follows:

Symbol has an absolute value

Symbol is relative to the start of the Section
Symbol was defined using SET

Symbol is a Macro

Symbol is a String Equate (EQUS)
Symbol was defined using EQU
Symbol appeared in an XREF statement
Symbol appeared in an XDEF statement
Symbol is a Function

Symbol is a Group Name

Symbol is a Macro parameter

Symbol is a short Macro (MACROS)
Symbol is a Section Name

Symbol is Absolute Word Addressable

Psy-Q Development System

Nintendo Chapter 6 - String Manipulation Functions 115

CHAPTER 6

String Manipulation
Functions

To enhance the Macro structure, the ASM658 assembler
provides powerful functions for string manipulation.
These enable the programmer to compare strings, examine
strings and prepare subsets.

This chapter covers the following string handling
functions and directive:

STRLEN
STRCMP
INSTR

SUBSTR

Psy-Q Development System

116 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 6 - String Manipulation Functions 117

Description

Syntax

See Also

Remarks

Examples

STRLEN

A function which returns the length of the text specified in
the brackets.

STRLEN(string)

STRCMP

e The STRLEN function is available at any point in the

operand.
Nummov macro
rept strlen(\1)
Ida #2
sta $420b
endr
endm

i\.l.ummov "12345"

The number of characters in the string is used as the
extent of the loop.

Psy-Q Development System

118 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

Examples

STRCMP

A function which compares the two text strings in the
brackets, and returns #rue if they match, otherwise it
returns false.

STRCMP(stringl ,string2)

STRLEN

e When comparing two text strings, the STRCMP
function starts numbering the characters in the target
texts from one.

Vers equ "Acs"
if strcmp("\Vers","Sales")
lda Sallnd
else
if strcmp("\Vers","Acs")
lda Acind
else
if strcmp("\Vers","Test")
Ida Tstind
endif
endif
endif

Psy-Q Development System

Nintendo

Chapter 6 - String Manipulation Functions 119

Description

Syntax

See Also

Examples

Note

INSTR

A function which searches a text string for a specified
sub-string. If the string does not contain the sub-string, a
result of zero is returned, if the sub-string is present, the
result is the location of the sub-string from the start of the
target text. There is an optional parameter specifying an
alternate start point within the string.

INSTR ([start,]string, sub-string)

SUBSTR

Mess equs "Demo for Sales Dept"
|f instr("\Mess","Sales")
Ida Sallnd
else
Ida Aclnd
endif

e When returning the offset of a located sub-string, the

INSTR function starts numbering the characters in the
target text from one.

Psy-Q Development System

120 Programmer’s Guide

Super-NES

Description

Syntax

See Also

Examples

SUBSTR

A directive assigns a value to a symbol, which is a
sub-string of a previously specified text string, defined by
the start and end parameters. The start and end parameters
will default to the start and end of the string, if omitted.

symbol

INSTR, EQUS

Message

Part1
Part2
Part3
Part4

where Partl equals Sample
Part2 equals String
Part3 equals A short

SUBSTR

equs

substr
substr
substr
substr

[start],[end],string

"A short Sample String"

9,14,"\Message"
16,,"\Message"
,7,"\Message"

., \Message"

The last statement is equivalent to an EQUS assigning the
whole of the original string to Part4.

cbb
lc

cc

macro
rept
substr
db

endr
endm

string

0

strlen(\string)
Ic+1,lc+1,\string
\cc’($AS5+c)
lc+1

Psy-Q Development System

Nintendo Chapter 7 - Local Labels 121

CHAPTER 7

liaal]
Local Labels Iogal]
Loqal]
lioual]

As a program develops, finding label names that are both
unique and definitive becomes increasingly difficult.
Local Labels ease this situation by allowing meaningful
label names to be re-used.

This chapter covers the following topics and directives:
e Local Label Syntax and Scope

MODULE and MODEND
LOCAL

Psy-Q Development System

122 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 7 - Local Labels 123

Syntax

Scope

Syntax and Scope

e Local Labels are preceded by a local label signifier. By
default, this is an @ sign; however, any other character
may declared by using the 1 option in an OPT directive
or on the Assembler command line - see Assembler
Options, page 141.

e Local label names follow the general label rules, as
specified on page 24.

e Local labels are not de-scoped by the expansion of the
macro.

The region of code within which a Local Label is effective
is called its Scope. Outside this area, the label name can be
re-used. There are three methods of defining the scope of
a Local Label:

e The scope of a local label is implicitly defined between
two non-local labels. Setting a variable, defining an
equate or RS value does not de-scope current local
labels, unless the d option has been used in an OPT
directive or on the Assembler command line - see
Assembler Options, page 141.

e Thescope of a Local Label can also, and more normally,
be defined by the directives MODULE and MODEND
- see page 125.

e Todefine labels (or any other symbol type) for local use
in a macro, the LOCAL directive can be used - see page
121.

Psy-Q Development System

124 Programmer’s Guide

Super-NES

Examples

plot2 lda compw
ldx HiSpot,y
bpl @chk1
Idy #0
bra @ret
@chk1 Ida HiSpot+1,y
sta >$004200,x
iny
iny
SetX 's'ét x+1
@ret rts
plot3 Ida HiSpot+2,y
@ret rts

The code above shows a typical use for Local Labels, as
"place markers" within a self-contained sub-routine. The
scope is defined by the non-local labels, Plot2 and Plot3;
the SET statement does not de-scope the routine. The
labels @chkl and @ret are re-usable.

Labf Ida 150,
bne @add
@add ldx HiSpot,y
Lab2 Idy #0
bra @add

In this example, the final branch will cause an error, since
it is outside the scope of @add.

Psy-Q Development System

Nintendo

Chapter 7 - Local Labels 125

Description

Syntax

See Also

Remarks

MODULE and MODEND

Code occurring after a MODULE statement, and up to
and including the MODEND statement , is considered to
be a module. Local labels defined in a module can be
re-used, but cannot be referenced outside the module’s
scope. A Local label defined elsewhere cannot be
referenced within the current module.

MODULE
MODEND
LOCAL

e Modules can be nested.

e The MODULE statement itself is effectively a
non-local label and will de-scope any currently active
default scoping.

e Macros can contain modules or be contained in a
module. A local label occurring in a module can be
referred to by a macro residing anywhere in that module.
A module contained within a macro can effectively
provide labels local to the macro.

Psy-Q Development System

126 Programmer’s Guide Super-NES

Examples KillCar module
jsr @FindCar
inx
@FindCar Ida HiCar+1,y
TryCar module
lda |$0,x
bne KillCar
rts

modend TryCar
modend KillCar

Psy-Q Development System

Nintendo Chapter 7 - Local Labels 127

LOCAL

Description The LOCAL directive is used to declare a set of
macro-specific labels and other symbols.

Syntax LOCAL symbol,...symbol
See Also MODULE
Remarks e The scope of symbols declared using the LOCAL

directive is restricted to the host macro.

e The LOCAL directive does not force a type on the
symbols that make up its parameters. In practice,
therefore, such symbols can be declared as equates,
string equates or any other type, as well as labels.

Examples MacShow macro

local Lab1,Numb1,Numb2, Text1
bra Lab1

Numb1 equ 63

Numb2 equ 15

Text1 equs "“A\\B"

Lab1
endm

Psy-Q Development System

128 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 8 - Structuring the Program 129

CHAPTER 8

Structuring the
Program

Normally, the organisation of the memory of the target
machine does not match the layout of the source files. To
create a structured target memory, as well as to create
relocatable program sections, the ASM658 assembler uses
the concept of Groups and Sections.

This chapter covers the following topics and directives:

SECTION

GROUP

PUSHS and POPS
SECT and OFFSET

Psy-Q Development System

130 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 8 - Structuring the Program 131

Description

Syntax

See Also

Remarks

Example

GROUP

This directive declares a group with up to six group
attributes.

GroupName GROUP [Attribute,. Attribute]
where an attribute is one of the following - see below for

descriptions:

BSS

ORG(address)
FILE(filename)
OBJ(address)
SIZE(size)
OVER(GroupName)

SECTION

e Group Attributes are interpreted as follows:

BSS - no initialised data. to be declared in this group.

Group1 group bss

Psy-Q Development System

132 Programmer’s Guide Super-NES

Example

Example

Examples

Example

ORG - sets the ORG address without reference to the
other group addresses. If this attribute is omitted, the
group will be placed in memory, following on from the
end of the previous group.

org $100
G1 group
G2 group org($400)
G3 group

will place the groups in the sequence G1,G2,G3

FILE - outputs a group, such as an overlay, to its own
binary file; other groups will be output to the declared file.

Group1 group org($400),file("ov1.bin")

OBJ - sets the group’s OBJ address. Code is assembled as
if it is running at the OBJ address but is placed at the
group’s ORG address. If no address is specified then the
OBJ value is the same as the group’s ORG address.

Group1 group org($400),0bj($1000)
Group2 group org($800),0bj()

SIZE - specifies the maximum allowable size of the
group. If the size exceeds the specified size, the
Assembler reports an error.

Group1 group size(32768)

Psy-Q Development System

Nintendo

Chapter 8 - Structuring the Program 133

Example

Example

The SIZE attribute has a second optional parameter, to
specify the value that should be used to pad the group if it
is less than the specified size. In the example below,
Group is allowed a size of 32k and unused bytes are
padded with $FF.

Group1 group size(32768,5ff)

OVER - overlays this group on the specified group. Code
at the start of the second group is assembled at the same
address as the start of the first group. The largest of the
overlayed groups’ sizes is used as the size of each group.
Note that it is necessary to use the FILE attribute to force
different overlays to be written to different output files.

Group2 group over(Group1)

Psy-Q Development System

134 Programmer’s Guide Super-NES

Description

Syntax

See Also

Remarks

S

-CTION

This directive declares a logical code section.

SECTION SectionName[,Group]

SECTIONB SectionNamel,Group]
SECTIONW SectionName| ,Group]

SectionName SECTION [Antribute,. Attribute]

The last format is a special case, designed to allow
definition of a section with group attributes - see below
for a description.

GROUP

By default, SECTION declares a byte-aligned section of
the source code. SECTIONB and SECTIONW allow a
section to be forcibly byte- or word-aligned.

Unless the section has been previously assigned, the
section will be placed in an unnamed default group, if
the GROUP name is omitted

It is possible to define a section with group attributes.
The assembler will automatically create a group with the
section name preceded by a tilde (~) and place the
section in it.

Psy-Q Development System

Nintendo

Chapter 8 - Structuring the Program

135

Example

Sect1 section bss

defines Sectl, with the BSS attribute, in a group called
~Sectl.

Note that, if a section is byfe aligned that the CNOP
directive cannot be used to align the PC to a value which
is larger than the alignment of the current section - see
pages 66.

Iff sections are used to structure application code, only
asingle ORG directive ican be used, which must precede
all section definitions. Groups and Sections may have
ORG attributes to position them.

When producing linkable output, no ORG directives or
attributes are permitted. Sections are ordered, within a
group, in the sequence that the Linker encounters the
section definitions.

It can also be left to the assembler to assign a section to
any group which has room for it, by specifying ? as the
group name.

section s1,?

The section s1 will be placed in any group with room,
although only groups that have had a size specified will
be considered as candidates. This is useful facility on the
SNES, since memory is broken up into 32K or 64K
banks and the programmer may not care which bank a
section is actually in.

Psy-Q Development System

136 Programmer’s Guide Super-NES

Examples

This example shows the use of Groups and Sections to
impose a structure on the target memory, as follows:

- preliminary version checks and includes;
- group declarations;

- a section of application code;

- a section of uninitialised data.

opt C-,S,V+

version equ 0 ; 0 => full version
; 1 =>demo version
; 2 => test version

include "miscmac.obj"
include "rooms.ob;j"
include "output.obj"

org $100
numvecs equ $100>>2
regs pc=progstart
if ~def(amiga)
amiga equ 1
endif
if ~def(ntsc)
ntsc equ 1
endif
g_code group
g_bss group bss

section code,g_code
section bss,g_bss

firstbss equ *

Psy-Q Development System

Nintendo Chapter 8 - Structuring the Program 137

USHS and POPS

Description These directives allow the programmer to open a new,
temporary section, then return to the original section.
PUSHS saves the current section, POPS restores it.

Syntax PUSHS

POPS

Examples passdl equ B
5ﬁshs
section dolight
dl passd|
pops

This example shows PUSHS and POPS being used to pass
system information, in the form of the location counter,
between sections.

Psy-Q Development System

138 Programmer’s Guide Super-NES

SECT and OFFSET

Description The SECT function returns the address of the section in
which the symbol in the brackets is defined. The
OFFSET function returns the location, in the host section,
of the symbol in the brackets.

Syntax SECT (expression)

OFFSET (expression)

Remarks e If a link is being performed, the SECT function is
evaluated when it is linked; if there is no link, it will be
evaluated when the second pass has finished.

e Likewise, if a link is being performed, the OFFSET
function is evaluated when it is linked; however, if there
is no link, it will be evaluated during the first pass.

Examples dw sect(Table1)
dw offset(Table2)
dw offset(*)

Psy-Q Development System

Nintendo Chapter 9 - Options, Listings and Errors 139

CHAPTER 9

Options, Llstlngs
and Errors

This chapter completes the discussion of the ASM658
Assembler and its facilities. It covers methods of
determining run-time Assembler options, producing
listings and error-handling, as well as passing information
to the Linker:

OPT

Assembler Options
PUSHO and POPO

LIST and NOLIST
INFORM

FAIL

XREF, XDEF and PUBLIC
GLOBAL

Psy-Q Development System

140 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 9 - Options, Listings and Errors 141

T

Description

Syntax

See Also

Remarks

Examples

This directive allows Assembler options to be enabled or
disabled in the application code - see overleaf for a full list
of options.

OPT option,..option

PUSHO, POPO

e Anoptionis turned on and off by the character following
the option code:

+ (plus sign) = ON
- (minus sign) = OFF
e Options may also be enabled or disabled by using the /O
switch on the Assembler command line - see Command
Line Syntax, page 13.
opt an+,l:+,e-

opt W+,WS+,0d+

Psy-Q Development System

142 Programmer’s Guide Super-NES

Assembler Options

The following reference list shows the various options and
optimisations available during assembly, with the default
settings; the options are later described in detail.

Option Default Description
20 Produce binary output for Mode 20 ROM Off
AN Enable Alternate Numeric mode Off
B Swap meaning of < and > Off
C Activate/ Suppress Case sensitivity Off
D Allow EQU or SET to descope local labels Off
E Disable error text print On
Lx Substitute x local label signifier Off
S Handle equated names as labels Off
T Truncate operand values automatically Off
TA Truncate address operands Off
v Write Local Labels to symbol file Off
W Disable warning messages On
WS Operands may contain white space Off
X XREFs in defined section Off
Optimisation:
OD Direct Page Optimisation Off

e Note that Assembler Optimisation can only be
performed on backward references.

Psy-Q Development System

Nintendo Chapter 9 - Options, Listings and Errors 143

Option Descriptions

20 - Output for Mode 20

Using the 20 option causes the Assembler to produce pure
binary output for the Mode 20 ROM.

AN - Alternate Numeric

Setting this option allows the inclusion of numeric
constants in Zilog or Intel format; that is, followed by H,
D or B, to signify Hex, Decimal or Binary. See also the
section on the RADIX directive - page 37.

B - Swap < and >

This option swaps the the meanings of /ess than and
greater than, when used in expressions.

C - Case Sensitivity

When the C option is set, the case of the letters in a label’s
name is significant. For example, SHOWSTATS,
ShowStats and showstats could all be legally used.

D - Descope Local Labels

If this option is enabled, local labels will be descoped if
an EQU or SET directive is encountered.

E - Error Line Printing

If this option is enabled, the text of the line that caused an
Assembler error will be printed, as well as the host file

Psy-Q Development System

144 Programmer’s Guide Super-NES

name and line number. If this option is not specified, the
default is ON.

L- Local Label Character

In ASM658, local labels are signified by a preceding AT
sign (@). This option allows the use of the character
following the option letter as the signifier. Thus, L: would
change the local label character to a colon (:). L+ and L-
are special formats that toggle the character between an
exclamation mark (!) and an @ sign (-).

T - Truncate operand values

When this option is used, operand values are
automatically truncated by the Assembler.

TA - Truncate address operands

When this option is used, address operands are
automatically truncated by the Assembler.

V - Local Labels to Symbol file

The Assembler will output all Local Label names to the
nominated symbol file, if this option is used.

W - Give warnings

The Assembler identifies various instances where a
warning message would be printed, but assembly allowed
to continue. Disabling the W option will suppress the
reporting of warning messages. If this option is not
specified, the default is ON.

Psy-Q Development System

Nintendo Chapter 9 - Options, Listings and Errors 145

WS - Allow white spaces

If this option is set ON, operands may contain white
spaces. Thus, the statement:

dl 1+2

defines a value of 1 with WS set OFF, and a value of 3
with WS set to ON.

X - XREFs in defined section

This option set to ON specifies that XREFs are assumed
to be in the section in which they are defined.

OD - Direct Page Optimisation

This option forces the Assembler to utilise Direct Page
optimisation.

Psy-Q Development System

146 Programmer’s Guide

Super-NES

Description

Syntax

See Also

Examples

PUSHO and POPO

The PUSHO directive saves the current state of all the
assembler options; POPO restores the options to their
previous state. They are used to make a temporary

alteration to the state of one or more options.

OPT

SetAlts
SETALTS

PUSHO

POPO

pusho

opt WS+, C+

B height*time
dw 256 * SetAlts
popo

Psy-Q Development System

Nintendo

Chapter 9 - Options, Listings and Errors 147

Description

Syntax

Remarks

Examples

LIST and NOLIST

The NOLIST directive turns off listing generation; the
LIST directive turns on the listing.

NOLIST
LIST indicator

where indicator is a plus sign (+) or a minus sign (-).

e If alist file is nominated, either by its inclusion on the
command line, or in the ASM658 environment variable,
the a listing will be produced during the first pass.

e The Assembler maintains a current listing status
variable, which is originally set to zero. List output is

only generated when this variable is zero or positive. The
listing directives affect the listing variable as follows:

NOLIST sets it to -1;

LIST with no parameter, zeroises it;
LIST + adds 1;

LIST - subtracts 1.

Directive Status Listing produced?
nolist -1 no
list - -2 no
list 0 yes
list - -1 no
list - -2 no
list + -1 no
list + 0 yes

Psy-Q Development System

148 Programmer’s Guide Super-NES

Note In the following circumstances, the Assembler
automatically suppresses production of listings:

- during macro expansion;

- for unassembled code because of a failed conditional.

These actions can be overridden by:

e including the /M option on the Assembler command line
to list expanding macros;

e including the /C option on the Assembler command line
to list conditionally ignored code - see Command Line
Syntax, page 13.

Psy-Q Development System

Nintendo Chapter 9 - Options, Listings and Errors 149

INFORM and FAIL

Description The INFORM directive displays an error message
contained in text, which may optionally contain
parameters to be substituted by the contents of
expressions, after evaluation. Further Assembler action is
based upon the state of severiry.

Syntax INFORM severity,text| ,expressions]

FAIL (see Note])

Remarks

These directives allow the programmer to display an
appropriate message if an error condition, which the
Assembler does not recognise, is encountered

e Severity is in the range 0 to 3, with the following effects:

0 : the Assembler simply displays the text;

1 : the Assembler displays the text and issues a warning;

2 : the Assembler displays the text and raises an error;

3 : the Assembler displays the text, raises a fatal error and
halts the assembly.

Text may contain the parameters %d, %h and %s. They
will be substituted by the decimal, hex or string values
of the operands.

Psy-Q Development System

150 Programmer’s Guide

Super-NES

Examples TableSize equ TableEnd-TableStart
MaxTable equ 512
if TableSize>MaxTable
inform 0,"Table starts at %h and&
is %h bytes long",&
TableStart, Tablelen
inform 3,"Table Limit Violation"
endif
Note! e The FAIL directive is a pre-defined statement, included

for compatibility with other assemblers. It generates an
"Assembly Failed" message and halts assembly.

Psy-Q Development System

Nintendo Chapter 9 - Options, Listings and Errors 151

XDEF, XREF and PUBLIC

Description If several sub-programs are being linked, to refer to
symbols in a sub-program which are defined in another
sub-program, use XDEF, XREF and PUBLIC.

Syntax XDEF symbol[,symbol]
XREF symbol[,symbol]
PUBLIC on
PUBLIC off
Remarks e Inthe sub-program where symbols are initially defined,

the XDEF directive is used to declare them as externals.

e Inthe sub-program which refers the symbols, the XREF
directive is used to indicate that the symbols are in a
another sub-program.

e The Assembler does not completely evaluate an
expression containing an XREFed symbol; however,
resolution will be effected by the linker.

e The PUBLIC directive allows the programmer to
declare a number of symbols as externals. With a
parameter of on, it tells the Assembler that all further
symbols should be automatically XDEFed, until a
PUBLIC off is encountered.

Psy-Q Development System

152 Programmer’s Guide Super-NES
Examples Sub-program A contains the following declarations:

xdef Scores,Scorers

xref PointsTable

The corresponding declarations in sub-program B are:

xdef PointsTable
xref Scores,Scorers
public on
Origin . Mainchar
Force dw speed*origin
Rebound dw 45*angle
public off

Psy-Q Development System

Nintendo

Chapter 9 - Options, Listings and Errors 153

Description

Syntax

See Also

Remarks

GLOBAL

The GLOBAL directive allows a symbol to be defined
which will be treated as either an XDEF or an XREF. If a
symbol is defined as GLOBAL and is later defined as a
label, it will be treated as an XDEF. If the symbol is never
defined, it will be treated as an XREF.

GLOBAL symbol[,symbol]

XREF, XDEF, PUBLIC

This is useful in header files because it allows all
separately assembled modules to share one header file,
defining all global symbols. Any of these symbols later
defined in a module will be XDEFed, the others will be
treated as XREFs.

Psy-Q Development System

154 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 155

CHAPTER 10

DBUG658 - The
Debugger

| Sprce Coad) |

DBUGG658 is a full source level Debugger, as well as a
traditional symbolic Debugger. This allows source code
to be viewed, run and traced, stepped-over, breakpoints
set and cleared.

The original symbolic debug facilities are all still
available. A source level display will revert to a symbolic
disassembly, when no source level information is
available.

The following Debugger topics are discussed in this
chapter:

Command Line Syntax
Configuration

Activity Windows
Debugger Options

Menu and Keyboard Usage
Link Software

Psy-Q Development System

156 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 10 - DBUG658 - The Debugger 157

Command Line Syntax

Syntax DBUGG6S8 /switches filename filename

DBUG658 ?

displays a help message.

Remarks e Filename specifies the name of a file containing
symbols, produced by the using the /zd option during
assembly. If no extension is shown, a default extension
of .SYM will be added. Multiple filenames are allowed
and must be separated by a space - the symbol files will
then be loaded in the order specified.

e Valid switches are:-

/h
Isfile

Ivexprtext

lefile] file file]
Irit#

[c-

[e+

(it

It#

/u-

|&expr,.. expr

Halt target at Debugger start-up.

Override default configuration filename

- see page 160.

Evaluate exprtext and put result to standard
output device.

Load target machine with CPE file(s).
Specify data screen rows in video bios.

Turn case sensitivity off

Turn case sensitivity on

Specify update interval (in 1/18ths sec)

Set target SCSI device number (default is 0).
Turn continual update mode OFF (+ for ON)
List of parameter expressions, separated

by commas.

Psy-Q Development System

158 Programmer’s Guide Super-NES

/m#

/m+

/m-

Remarks

Label
Level

Sets the Debugger mouse sensitivity;

1s a number between 1 to 4 - default is 3.
DBUGG658 drives the mouse itself. This
overcomes some shortcomings exhibited

by the Microsoft Mouse driver, particularly

in 132 column mode.

Use the current system mouse driver; later
versions of the Microsoft drivers (8 upwards)
allow the mouse to be used in a DOS window.
Revert to DBUG658 mouse driver.

Source level mode can be used if a symbol file is
specified on the command line. This file contains
symbols and additional source level information
produced by the /zd option in the ASM658 Assembler -
see page 13. See page 163 for more about Source Level
Debugging.

Expressions passed to the Debugger using the /& switch
can be referred to in the form &0, &1, etc., where 0
means the firstexpression on the command line, 1 means
the second.

Label level values are as follows:
Meaning
Display symbols only in address field.

Display symbols in address field, and show
non-immediate or offset symbols.

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 159

2 Display as Level 1, and show long-immediate
symbols.

3 Display as Level 2, and show offset (An)
symbols.

4 Display as Level 3, and show offset (An,Dn)
symbols.

Psy-Q Development System

160 Programmer’s Guide Super-NES

Configuration Files

When DBUG658 is loaded, it accesses a configuration
file, containing information about the current Debugger
environment. The current configuration can be saved at
any time during an active Debugger session. The default
filename can be overriden with an option on the command
line (/s) or at run-time, so that the most frequently used
configurations are always readily available.

Configuration File Names

e The normal configuration file name is DBUG658.C##,
where the first number is the target SCSI id number, and
the second number is the virtual screen. Typically,

therefore, the configuration loaded at start-up is
DBUG658.C00.

e If this file is not located in the current directory, the
Debugger looks for a file called DBUG658.DF# (the
default configuration file).

e If the default configuration cannot be found, the
Debugger will search the directory from which the
program was loaded, for a file called SNES .CFG.

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 161

Contents of Configuration File
A configuration file can include the following information:

- Read Memory Ranges;

- Write Memory Ranges;

- Video type and usage;

- Label Level;

- Colour and Mono attributes;

- Tab Settings;

- Current Window Type and Display position;
- Breakpoints;

- History details.

Psy-Q Development System

162 Programmer’s Guide Super-NES

Activity Windows

The Debugger display consists of one or more activity
windows. The number of windows, the contents of each
window and the window size, can all be specified at
run-time. The default display consists of two windows;
the upper window normally contains a display of the
registers, the lower window shows the disassembly of the
code at the current pointer.

The Debugger can run up to 10 virtual screens; each
screen has its own configuration file - see page 160.
Alternate screens can be accessed by pressing Alt-n,
where n is the screen number O - 9, where 0 means screen
10.

Window Types

The Register Window provides a complete view of the selected
processor’s registers. Register contents can be changed:

- by typing directly at the current cursor location;
- by entering an expression; pressing the ENTER key
displays an expression input window.

The Disassembly Window shows the contents of the target
memory as disassembled code. If a symbol file has been loaded
into the Debugger, symbol names are substituted as appropriate,
according to the label level. Breakpoints conditions and counts can
be added to any line, and the code run, traced or stepped.

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 163

If the PC of the target machine is pointing at a line in the current
disassembly display, it is indicated by a greater than sign (>). If a
line contains a breakpoint, that line is displayed in a different
colour; the breakpoint count and expression details are shown at
the end of the line.

The Hex Window displays memory in hexadecimal, either in
byte, word or long word form. Like the Register Window, contents
can be changed:

- by typing directly at the current cursor location;

- entering an expression for evaluation, by pressing the
ENTER key to display an expression input window;

- pressing + or - will increment or decrement the value at
the cursor position.

The Watch Window allows variables, tables and code locations to
be monitored during running, by displaying specific memory
addresses. These addresses are normally determined by
expressions, including symbolic names, entered via the Watch
Window.

The Text or File Window allows a text file to be viewed directly.
Note that pressing ENTER, while the cursor is in the File
Window, allows entry of a further file name for display.

Psy-Q Development System

164

Programmer’s Guide Super-NES

The Source Level Window is an extension of the File window.
Source Level mode is entered by pressing TAB, to display the
current PC location, in a File window. It may be an empty File
window, obtained by pressing ENTER in response to the filename
prompt. This will load the appropriate source file into the Text
window and position the cursor on the PC line. Note that, when in
Source mode, line numbers are added to the left side of the
window display and the PC line is indicated with a ’>" after the
line number, similar to a Disassembly window.

The programmer can step, trace, and set breakpoints in the source
code in much the same way as a Disassembly window. The cursor
in the currently active text window will track the PC during a
trace. Note, however, that unlike tracing in a Disassembly
window, a trace at Source Level may trace more than one
instruction. Rather, it will trace the entire source /ine, which, if it
is a macro or a "C’ source line, may correspond to the execution of
one or more instructions. Similarly F8 (Stepover) will step-over
the entire source line, which could be equivalent to stepping over
several subroutine calls.

If the programmer is unsure of how a Source Level operation will
behave, a Disassembly window can be viewed at the same time, to
determine how the operations correspond to actual processor
instructions. As the cursor tracks the PC at each step or stepover
operation, if the PC should enter a region of the target code for
which there is no Source Level information available, the window
display will switch to Disassembly mode. The trace can be
continued, and when the PC returns to a region for which there is
Source information, the window will switch back to the Text
display.

In order to use any of the Source Level features you must have
extra debugging information in your symbol file(s). This
information is added to the symbol files by the Assembler if the
/zd switch was specified on the command line.

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 165

Using Debugger Windows

The following key strokes and mouse actions allow the
programmer to exercise control over the Debugger display
- note that a complete list of all key and menu options is
given later in the chapter.

Moving between windows

Use one of the following methods to move between
Debugger windows:

- Press F1, followed by an up or down cursor key to point
to the required window;

- Press Shift, plus up or down cursor key;

- Point at the required window with the mouse and click.

To select the Window type
To change the type of the currently selected window:

- Either use the mouse to select the SET TYPE option from
the WINDOW menu;

- Or press Shift and F1;

- In each case, a selection window is presented - use the
mouse, or the cursor keys plus ENTER, to choose the new

type.

Psy-Q Development System

166 Programmer’s Guide Super-NES

Re-sizing Windows

To change the size of a Debugger window:

Position the cursor in the required window;

Press F2;

Use the up or down cursor key to move the selected
window edge to the desired size;

- Press ENTER to confirm.
Note that the currently selected window may be zoomed

to fill the screen by pressing Control-Z; press again to
re-present the original display.

To split an existing window
To add another window to the display:
- Position the cursor in the required window;
- Press F3;

- The new window is the same type as the source window.

Joining two windows
To remove a Debugger window:

- Position the cursor in the required window;

- Press F4;

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 167

- Use the up or down cursor key to select the window edge
to be removed;

- Press ENTER to confirm.

To move the cursor within a window

The cursor control keys allow the re-positioning of the
cursor in the selected window, as follows:

e Register Window - Use the four arrow keys to move
between register values; the HOME key positions the
cursor in the top left register field.

e Watch Window - Use the four arrow keys to move
between adjacent lines and characters; the HOME key
positions the cursor in the top left character position.

e Disassembly and Text Window - Use the up and down
arrows to move the highlight bar; the HOME key moves
the line under the cursor to the top of the window.

e Hex Window - Use the four arrow keys to move between
adjacent lines and bytes/words; the HOME key moves
the byte/word under the cursor to the top left of the
window.

Locking a window

A window can be locked into displaying a specific
memory region, as follows:

e Pressing Alt-L, and entering an address, or an expression
which evaluates to an address, in the input box;

Psy-Q Development System

168 Programmer’s Guide Super-NES

Selecting the LOCK option from the WINDOW menu;
Pressing Control-L turns the lock on and off.

A display can be locked to the expression &0; this allows
the Debugger to be started with a window pointing to an
address or label specified on the command line - see page
158.

If a lock expression is set, but de-activated by Control-L,
the Debugger will start-up with the display initially
positioned at the lock address, but the window start can
subsequently be changed with the cursor keys, etc., as
normal.

General Mouse Usage

Clicking the left mouse button re-positions the cursor to
the site of the click. If the new position is in another
window, it will become the active window.

Clicking the right mouse button on a register in the
Register window will open an expression input box.

Clicking the right mouse button on a memory field in the
Hex window will open an expression input box.

Clicking the right mouse button on a line in the
Disassembly window toggles a breakpoint.

A window can be re-sized by clicking the left mouse
button on a window edge and dragging it to the new
position.

Dragging a window border to the edge of the window
deletes the window.

Psy-Q Development System

Nintendo

Chapter 10 - DBUG658 - The Debugger 169

Expressions

Prompts

Keyboard Options

The following table is a complete list of keyboard options,
categorised by function. Many of these functions are
duplicated by Menu options; however, such functions are
shown in both lists for reference purposes.

At many points in the session, the Debugger will prompt
for input - this can often take the form of an expression for
evaluation. Expressions in the Debugger follow the same
rules as the Assembler (see page 23 onwards), with the
following exceptions:

- Expressions may contain processor registers.

- The Debugger assumes a radix of hexadecimal; to
indicate a number is decimal, it is preceded by a # sign.

- Indirect addresses are indicated by square brackets [|.

- Where appropriate, the Debugger assumes an indirect
datum is a long word; this can be overriden by use of the
@ operator, in place of the dot, together with b or w,
following the square bracket.

Each time that the Debugger requests input, the reply is
stored. These stored prompts form a history, which can be
accessed and edited at data entry time, by using the up and
down arrow keys. Note that, when the Debugger closes,
the last four historic entries in each class are stored on the
configuration file, and restored the next time that the
Debugger is loaded.

Psy-Q Development System

170 Programmer’s Guide Super-NES

Key(s) Effect
Leaving the
Debugger
Ctrl-X Exit the Debugger, without saving the current
configuration
Alt-X Exit the Debugger and save the current configuration
Alt-Z Exit to DOS shell; type EXIT to return to the Debugger
Window
Handling
F1 Move to next window
F2 Re-size Window
F3 Divide a Window
F4 Delete a Window
Shift-Arrows Move to selected Window
Ctrl-Z Zoom current Window; again to restore original display
Shift-F1 Select Window Type

Debug Control

Ctrl-F2 Start paused Debugging Session, if using a CPE file
Esc Halt the target machine at first opportunity
Shift-Esc Halt the Target machine, turning off all interrupts
Alt-R Restore Registers from previous Save
Alt-1 Set the update interval; the interval is input in 18ths of

a second, therefore, 18 means once a second, 9
means twice a second, etc.

Alt-U Turn update mode on or off

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 171

Key(s) Effect
+ Increment Label Level

- Decrement Label Level

F6 Run Target code until the instruction under the cursor
is reached
F7 Trace Mode; traps and Line A calls are stepped over
F8 Stepover mode; subroutine calls and DBRA
instructions are stepped over
F9 Run Target code from current Program Counter
Shift-F7 Trace traps and Line A calls
Shift-F9 Run to address, specified in input window
Alt-F4 Backtrace; this function provides an UNDO of the

updates effected by the latest trace (the Debugger
keeps a record of about 200 instructions, depending
on their content). Note that updates to certain write
registers in the target machine, and memory areas
designated as write only, cannot be undone.

File Accessing

< Upload specified data from the Target to a named file
on the PC
> Download a file to the Target
Shift-F10 Load a new configuration file
Alt-S Send specified section of Disassembly to a PC file

Miscellaneous

F10 Select a Menu Option
Alt-H Hex Calculator; enter an expression to be evaluated
Alt-D Display the amount of free memory

Psy-Q Development System

172 Programmer’s Guide Super-NES

Key(s)
Alt-n

Disassembly
Window

Up/Down Arrows
Left/Right Arrows
PgUP/Dn

Home

Alt-G
Tab
Shift-Tab

Alt-L
Ctrl-L
Alt-M

Ctrl-N

ENTER

File and Source
Windows

Tab

Effect
Switch to Virtual Screen n (1 -9 plus 0 = 10).

Move highlight bar
Move display by one word
Move display by a page

Move display so that currently highlighted line is at the
top

Go to address specified in input window
Move the highlight bar to the Program Counter

Make the Program Counter the same as the currently
highlighted address

Lock the display to a specified address
Turn Lock on or off

Toggle default MX state, which is used to disassemble
instructions for which the actual MX cannot be
determined form the context or from MX records in the
symbol table

Note MX state at cursor position; creates an MX
record in the symbol table for the address at the cursor

Mini-Assembler; displays an input box, to enter a
single line of source code to be assembled and
inserted at the location under the cursor

Load appropriate Source file; when in Source Level
mode, use keys as in Disassembly window

Psy-Q Development System

Nintendo

Chapter 10 - DBUG658 - The Debugger 173

Key(s)

Breakpoints
Alt-C
Ctrl-C

E5
Shift-F5
Shift-F6

Hex Window
Arrows
PgUp/Dn

Home

Alt-W
ENTER

0-9, A-F
+

Alt-G
Alt-F

Register Window

Arrows

Home

Effect

Enter condition for the highlighted breakpoint
Enter count for the highlighted breakpoint
Turn highlighted breakpoint on or off

Clear all current breakpoints

Reset all current breakpoint counts

Move to adjacent byte/word/long word
Move display by one page

Move display so that currently highlighted
byte/word/long word is at the top

Switch display between byte, word and long word

Change contents of current location to the result of an
expression; entered in an input window

Directly change contents of highlighted location
Increment contents of highlighted location
Decrement contents of highlighted location

Go to address specified in input window

Move display to address contained in highlighted
location

Move to next register

Move to top left register

Psy-Q Development System

174 Programmer’s Guide Super-NES

Key(s) Effect

ENTER Change contents of current register to the result of an
expression; entered in an input window

0-9, A-F Directly change contents of highlighted register

Watch Window

Arrows Move to next watch expression
Home Move to top watch expression
Ins Add a new watch expression
Del Delete the highlighted watch expression

Psy-Q Development System

Nintendo Chapter 10 - DBUG658 - The Debugger 175
Menu Options
The DBUG658 menu affords easy mouse access to the
commonest Debugger functions. Note that, if no mouse is
available, the Menu can still be accessed by pressing F10.
Option Effect
FILE
Reload Reload the last executable file
Download Download a file to the Target
Upload Upload specified data from the Target to a named file
on the PC
Disassemble Send specified section of Disassembly to a named PC
file
Exit to DOS Exit to DOS shell; type EXIT to return to the Debugger

Exit Debugger

RUN
Go
Stop
To Address

Backtrace

Exit the Debugger and save the current configuration

Run Target code from the current Program Counter
Halt the Target machine, turning off all interrupts
Run to address, specified in input window

This function provides an UNDO of the updates
effected by the latest trace (the Debugger keeps a
record of about 200 instructions, depending on their
content). Note that updates to certain write registers in
the target machine, and memory areas designated as
write only, cannot be undone.

Psy-Q Development System

176 Programmer’s Guide Super-NES

Option

WINDOW
Set Type
Lock

Print
Set Tabs

CONFIG
Load

Save

CPU
Save Regs
Reset Regs

Reset

STEP

STEPOVER

Effect

Select Window Type

Lock the display to the address entered in an input
window

Output screen to system printer

Enter up to 8 tab positions, in decimal, separated by
spaces;

note this function is only relevant to File and Source
Disassembly windows

Load a new configuration file

Save the current configuration to the specified file

Save the current state of the registers
Reload the previously saved register state

Reset the Target Processor

Trace Mode; traps and Line A calls are stepped over

Stepover mode; subroutine calls and DBRA
instructions are stepped over

Psy-Q Development System

Nintendo

Chapter 10 - DBUG658 - The Debugger 177

The Link Software

The adapter hardware contains software in ROM to enable
it to communicate with the host PC. In addition, this ROM
contains code to perform some functions which may be
useful in the development stages of a product - see page
213, Target Interface Software Functions. The target
interface software hooks the following 65816 exception
vectors by default:-

$00FFE4 COop dw $FFF4
(used for miscellaneous firmware functions)
$00FFE6 BRK dw $FFFO
(used for breakpoints)
$O00FFE8 ABORT dw $FFFO
$00FFEA NMI dw $FFFO
$00FFEC dw $0000
$O0FFEE IRQ dw $FFF0

The memory at $00FFFO is set-up to contain:-
!

$OOFFFO JML BRKentry (JML $7DE00B)
$00FFF4 JML COPentry (JML $7DEOOE)
$O0FFF8 JML coldstart (JML $7DE000)

In particular, the BRK and COP vectors are necessary for
the correct function of the Debugger and the Line-A
vector is used to provide various user functions. The
application software will inevitably need to overwrite
these vectors but care should be taken to initialise them as
documented above - see also notes on COP $05
instruction, page 215.

Psy-Q Development System ,

178 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 11 - The PSYLINK Linker 179

CHAPTER 11

The PSYLINK Linker

The Psy-Q Linker, PSYLINK, is a fully-featured linker,
which works with all processor types, and is compatible
with other popular cross-compilers, such as Sierra and
Aztec C. It facilitates the splitting of complex programs
into separate, manageable modules, which can be
recombined by PSYLINK into a final, single program.

This chapter discusses the linker, together with the
Librarian utility, under the following headings:

Command Line Syntax
Linker Command Files
XDEF, XREF and PUBLIC
GLOBAL

The Linker-associated Assembler directives are repeated
here for ease of reference.

Psy-Q Development System

180 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 11 - The PSYLINK Linker 181

Command Line Syntax

Description The PSYLINK link process is controlled by a series of
parameters on the command line, and by the contents of a
Linker command file. The syntax for the command line is
as follows:
Syntax
PSYLINK /switches sourcefiles,outputfile,symbolfile mapfile libraries

If a parameter is omitted, the separating comma must still
appear, unless it is the last parameter of the line.

Linker Switches

Switches are preceded by a forward slash, and separated
by commas. The following switches are available:

Switch Description
/b Specifies that the linker should run in *big’
mode. This allows the linker to link larger

programs but with a link-time penalty.

e Tells the linker to link case sensitive; if it is
omitted, all names are converted to upper case.

/d Debug Mode - perform link only.
le symb=value Assigns value to symbol.
/i Invokes a window containing Link details.

/m Output all external symbols to the map file.

Psy-Q Development System

182 Programmer’s Guide Super-NES

lo address Set an address for an ORG statement.

lo ?address Request to target to assign memory for ORG.

/p Create output as binary.

fr format .Create machine specific relocatable output.

/u number Specify the unit number in a multi-processor

target.

/X address Set address for the program to begin execution.

Sourcefile(s) A list of code source files, output by the ASM658

Outputfile

Symbolfile

Mapfile

Libraries

Assembler. File names are separated by spaces or plus (+)
signs; if the file starts with an @ sign, it signifies the name
of a Linker command file - see page 183 for a description
of the format .

The destination file for the output object code; if omitted,
no object code is generated. If the output file name is in
the format Tn:, the object code is directly sent to the
target machine - n specifies the SCSI device number.

The destination file for the symbol table information for
use by the Debugger.

The destination file for map information.

Library files available - see page 189 for further
information.

Psy-Q Development System

Nintendo Chapter 11 - The PSYLINK Linker 183

Linker Command Files

Command files contain instructions for the Linker, about
source files and how to organise them. The Linker
command file syntax is much like the Assembler syntax,
with the following commands available:

Commands
INCLUDE filename Specify name of object file to be read.
INCLIB filename Specify library file to use
ORG address Specify ORG address for output
WORKSPACE address Specify new target workspace address
name EQU value Equate name to value
REGS pc=address Set initial PC value

name GROUP attributes Declare group

name SECTION artributes Declare section with attributes

SECTION name|,group] Declare section, and optionally

specify its group

name ALIAS oldname Specify an ALIAS for a symbol name
Also available,

PROC, ENDP, LABEL, Sec page 91 onwards, for description

CALL, JUMP

Group attributes:

BSS - group is uninitialised data

ORG(address) - specify group’s org address

OBJ(address) - specify group’s obj address

OBJ() - group’s obj address follows on from
previous group

OVER(group) - overlay specified group

FILE("filename") - write group’s contents to specified file

SIZE(maxsize) - specify maximum allowable size

Psy-Q Development System

184 Programmer’s Guide Super-NES

Remarks

Examples

Sections within a group are in the order that section
definitions are encountered in the command file or
object/library files.

Any sections that are not placed in a specified group will
be grouped together at the beginning of the output.

Groups are output in the order in which they are declared
in the Linker command file or the order in which they
are encountered in the object and library files.

Sections which are declared with attributes, that is, not
in a group, in either the object or library files, may be
put into a specified group by the appropriate declaration
in the Linker command file.

include "inp.obj"
include "sort.obj "
include "out.obj"

org 1024

regs pc=progstart
lowgroup group
codegroup group
bssgroup group bss

section datal,lowgroup
section data2,lowgroup

section codel,codegroup
section code2,codegroup

section tables,bssgroup
section buffers,bssgroup

Psy-Q Development System

Nintendo Chapter 11 - The PSYLINK Linker 185

XDEF, XREF and PUBLIC

Description If several sub-programs are being linked, to refer to
symbols in a sub-program which are defined in another
sub-program, use XDEF, XREF and PUBLIC.

Syntax XDEF symbol|,symbol |
XREF symbol[,symbol

PUBLIC on
PUBLIC off

Remarks e Inthe sub-program where symbols are initially defined,
the XDEF directive is used to declare them as externals.

* Inthe sub-program which refers the symbols, the XREF
directive is used to indicate that the symbols are in a
another sub-program.

e The Assembler does not completely evaluate an
expression containing an XREFed symbol; however,
resolution will be effected by the linker.

e The PUBLIC directive allows the programmer to
declare a number of symbols as externals. With a
parameter of on, it tells the Assembler that all further
symbols should be automatically XDEFed, until a
PUBLIC off is encountered.

Psy-Q Development System

186 Programmer’s Guide Super-NES
Examples Sub-program A contains the following declarations:

xdef Scores,Scorers

xref PointsTable

The corresponding declarations in sub-program B are:

xdef PointsTable
xref Scores,Scorers
public on
Origin = Mainchar
Force dw speed*origin
Rebound dw 45*angle
public off

Psy-Q Development System

Nintendo

Chapter 11 - The PSYLINK Linker 187

Description

Syntax

See Also

Remarks

GLOBAL

The GLOBAL directive allows a symbol to be defined
which will be treated as either an XDEF or an XREF. If a
symbol is defined as GLOBAL and is later defined as a
label, it will be treated as an XDEF. If the symbol is never
defined, it will be treated as an XREF.

GLOBAL symbol| ,symbol]

XREF, XDEF, PUBLIC

This is useful in header files because it allows all
separately assembled modules to share one header file,
defining all global symbols. Any of these symbols later
defined in a module will be XDEFed, the others will be
treated as XREFs.

Psy-Q Development System

188 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 12 - The Librarian 189

CHAPTER 12

The Librarian

If the Linker cannot find a symbol in the object files, it
can be instructed, by a Linker command line option, to
search one or more object module Library files.

This chapter discusses Library usage and the PSYLIB

library maintenance program:

e PSYLIB Command Line Syntax
e Using the Library feature

Psy-Q Development System

190 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 12 - The Librarian 191

Description

Syntax

See Also

Switches

/a
/d
|

/u
/x

Library

Modules

PSYLIB Command LIne Syntax

The Library program, PSYLIB.EXE, adds to, deletes
from, lists and updates libraries of object module.

PSYLIB /switches library module.. module

where switches are preceded by a forward slash (/), and
separated by commas.

PSYLINK

Add the specified modules to the library
Delete the specified module from the library
List the modules contained in the library
Update the specified modules in the library
Extract the specified modules from the library

The name of the file to contain the object module library.

The object modules involved in the library maintenance.

Using the Library feature

e To incorporate a Library at link time, specify a library
file on the Linker command line - see page 182

Psy-Q Development System

192 Programmer’s Guide Super-NES

e If the Linker locates the required external symbol in a
nominated library file, the module is extracted and
linked with the object code output by the Assembler

Psy-Q Development System

Nintendo Chapter 13 - The PSYMAKE Utility 193

CHAPTER 13

The PSYMAKE Utility

PSYMAKE is a make utility for MS-DOS which
automates the building and rebuilding of computer
programs. It is general purpose and not limited to use
with the Psy-Q system. The utility is discussed under the
following headings:

Command Line Syntax
e Format of the Makefile

Psy-Q Development System

194 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 13 - The PSYMAKE Utility 195

Description

Syntax

Remarks

PSYMAKE Command Line Syntax

PSYMAKE rebuilds only those components of a system
that need rebuilding. Whether a program needs rebuilding
is determined by the file date stamps of the target file and
the source files that it depends on. Generally, if any of the
source files are newer than the target file, the target file
will be rebuilt.

PSYMAKE [options] [target]

e Valid options are :

/b Build all, ignoring dates
/d name=string Define name as string
If filename Specify the MAKE file

/i Always ignore error status

Iq Quiet mode; do not print commands before
executing them

/x Do not execute commands - just print them

e If no /f option is specified, the default makefile is
MAKEFILE.MAK; if no extension is specified on the
makefile name, MAK will be assumed.

e If no target is specified, the first target defined in the
makefile will be built.

Psy-Q Development System

196 Programmer’s Guide Super-NES

Contents of the Makefile

The Makefile consists of a series of commands, governed
by explicit rules, known as dependencies, and implicit
rules. When a target file needs to be built, PSYMAKE
will first search for a dependency rule for that specific
file. If none can be found, PSYMAKE will use an
implicit rule to build the target file.

Dependencies:
A dependency is constructed as follows :

targetfile : [sourcefiles]
[command

command]

e The first line instructs PSYMAKE that the file
“targetfile” depends on the files listed as "sourcefiles”.

e If any of the source files are dated later than the target
file, or the target file does not exist, PSYMAKE will
issue the commands that follow in order to rebuild the
target file.

e Ifno source files are specified, the target file will always
be rebuilt.

e If any of the source files do not exist, PSYMAKE will
attempt to build them first, before issuing the commands
to build the current target file. If PSYMAKE cannot find

Psy-Q Development System

Nintendo

Chapter 13 - The PSYMAKE Utility 197

Examples

any rules defining how to build a required file, it will
stop and report an error.

o The target file name must start in the left hand column.
The commands to be executed in order to build the target
must all be preceded by white space (either space or tab
characters). The list of commands ends at the next line
encountered with a character in the leftmost column.

main.cpe: main.e58 inc1.h inc2.h
ASM658 main,main

This tells PSYMAKE that main.cpe depends on the files
main.658, incl.h and inc2.h. If any of these files are dated
later than main.cpe, or main.cpe does not exist, the
command "ASM658 main,main” will be executed in order
to create or update main.cpe.

main.cpe: main.e58 inc1.h inc2.h
ASMB658 /I main,main,main
psylink main,main

Here, two commands are required in order to rebuild
main.cpe.

Implicit Rules

If no commands are specified, PSYMAKE will search
for an implicit rule to determine how to build the target
file. An implicit rule is a general rule stating how to derive

files of one type from another type; for instance, how to
convert .ASM files into .EXE files.

Psy-Q Development System

198 Programmer’s Guide Super-NES

Examples

Implicit rules take the form:

.<target extension>.<source extension>:
command

command]

e Each <extension> is a 1, 2 or 3 character sequence
specifying the DOS file extension for a particular class
of files.

e Atleast one command must be specified.
.bin.658:
asm658 /p $*,$*
This states that to create a file of type .bin from a file of

type .658, the ASM658 command should be executed.
(See below for an explanation of the $* substitutions.)

Executing commands :

Once the commands to execute have been determined,
PSYMAKE will search for and invoke the command.
Search order is:

- current directory;

- directories in the path.

If the command cannot be found as A. EXE or A.COM file
or the command is A.BAT file, PSYMAKE will invoke
COMMAND.COM to execute the command/batch file.
This enables commands like CD and DEL to be used.

Psy-Q Development System

Nintendo

Chapter 13 - The PSYMAKE Utility 199

Command prefixes :

The commands in a dependency or implicit rule command
list may optionally be prefixed with the following
qualifiers :

@ - suppress printing of command before
execution
- number - abort if exit status exceeds specified level

Macros

- (without number) ignore exit status
(never abort)

Normally, unless /q is specified on the command line,
PSYMAKE will print a command before executing it.
If the command is prefixed by @, it will not be printed.

If a command is prefixed with a hyphen, followed by a
number, PSYMAKE will abort if the command returns
an error code greater than the specified number.

If a command is prefixed with a hyphen without a
number, PSYMAKE will not abort if the command
returns an error code.

If neither a hyphen or a hyphen+number is specified, and
/iis not specified on the command line, PSYMAKE will
abort if the command returns an error code other than 0.

A macro is a symbolic name which is equated to a piece
of text. A reference to that name can then be made and

Psy-Q Development System

200 Programmer’s Guide Super-NES

will be expanded to the assigned text. Macros take the
form:

name = text
e The text of the macro starts at the first non-blank
character after the equals sign (=), and ends at the end
of the line.
e (ase is significant in macro names.

e Macro names may be redefined at any point.

e If a macro definition refers to another macro, expansion
takes place at time of usage.

e A macro used in a rule is expanded immediately.

Examples
FLAGS =/p /s

bin.658:
ASM658 $(FLAGS) /p $*,$*

The $(FLAGS) in the ASM658 command will be replaced
with /p /s.

Pre-defined macros :

The following pre-defined macros all begin with a dollar
sign and are intended to aid file usage:

$d Defined Test Macro, e.g.:
lif $d(MODEL)
if MODEL is defined ...

Psy-Q Development System

Nintendo Chapter 13 - The PSYMAKE Utility 201

$* Base file name with path, e.g.:
.CAPSYQ\TEST

$< full file name with path, e.g.:
C:\PSYQ\TEST.658

$: path only, e.g.:
C:\PSYQ

$. full file name, no path, e.g.:
TEST.658

$& base file name, no path, e.g.:
TEST

e The filename pre-defined macros can only be used in
command lists of dependency and implicit rules.

Directives :

The following directives are available:

Yif expression
lelseif expression
lelse

lendif

These directives allow conditional processing of the text
between the if, elseif, else and endif. Any non-zero
expression is TRUE; zero is FALSE.

lerror message Print the message and stop.

tundef macroname Undefines a macro name.

Psy-Q Development System

202 Programmer’s Guide Super-NES

Expressions :

Expressions are evaluated to 32 bits, and consist of the
following components :

Decimal Constants e g 1101234
Hexadecimal $FFO() $123abc
Monadics -~
Dyadics +—*/%><&
| N && I
> < >= <= == (or=)
I= (or <>)

e The operators have the same meanings as they do in the
Clanguage, except for = and <>,which have been added
for convenience.

Value assignment :

Macro names can be assigned a calculated value; for
instance:

NUMFILES == $(NUMFILES)+1
(Note two equals signs in value assignment)

This evaluates the right hand side, converts it to a decimal
ascii string and assigns the result to the name on the left.

In the above example, if NUMFILES was currently "42",
it will now be "43".

Psy-Q Development System

Nintendo Chapter 13 - The PSYMAKE Utility 203

Note that:
NUMFILE = $(NUMFILES)+1
would have resulted in NUMFILES becoming "42+1".

e Undefined macro names convert to '0” in expressions
and null string elsewhere.

Comments:
Comments are introduced by a hash mark (#):

main.exe: main.asm # main.exe only depends
on main.asm

whole line comment

Line continuation:

A command too long to fit on one line may be continued
on the next by making '\’ the last character on the line,
with no following spaces/tabs:

main.exe : main.asm i1.hi2.h\
i3.hi4.h

Psy-Q Development System

204 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Chapter 14 - Setting up the Target machine 205

CHAPTER 14

Setting up the Target
machine

Fitting and configuring the Target Interface Adapter to the
Super-NES is a simple task - this is discussed in the first
part of this chapter. Also described are useful functions in
the adapter firmware, and some fileserver routines specific
to the Super-NES, as follows:

Installation of the Target Interface Adapter
Firmware diagnostics

Target Interface Software Functions
Fileserver Functions

Psy-Q Development System

206 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Chapter 14 - Setting up the Target machine 207

Installing the Target Interface Adapter

LED1
LED2

~ SW1

CN1

Dip Switches,
on other side
of board

Installation Install the target interface adapter as follows:

The adapter is inserted into the Super-NES cartridge slot
with the curved side facing towards the front on the unit.

An appropriate Super-Nintendo cartridge, of the same
country of origin as the console, must be plugged into
the through-connector, for the Super-NES adapter
interface to function. This not only supplies the security
chip, but can also provide additional facilities, such as
DSP chips and battery-backed RAM.

The cable from the host PC adapter board is plugged into
the adapter at CNI.

Psy-Q Development System

208 Programmer’s Guide Super-NES

e The DIP switches should be set before the adapter is
plugged in, since they are inaccessible once the board
has been fitted.

e SWI toggle switch is initially in the middle position.

e LEDI comes on and stays on; LED2 will light briefly
and then go off, when the adapter completes its self-test.

DIP Switch settings:-

Note that Dip Switches must be set before the adapter
interface is fitted.

Switch No Description

1,2,3 Select SCSI ID to be used by adapter;
default is OFF, OFF, OFF for ID 0.

4 ON to enable fast hardware mapping.
This replaces 64K of RAM from the fast area
($FDXXXX), which may be undesirable if
developing a 16 Megabit fast mode product.
Otherwise, set this switch ON, for maximum

SCSI link performance.
5,6 Cartridge type to emulate - see table below
7 Firmware bank; this switch should be ON
8 Not used

Psy-Q Development System

Nintendo Chapter 14 - Setting up the Target machine 209

Settings of switches 5 and 6, for the cartridge emulation
type, are as follows:

SW5 SWe6 Cartridge type

OFF OFF Standard mode 20 - 1 Megabyte slow.
RAM in top 32K banks $00 to $1F,
RAM in top 32K banks $80 to $9F (fast).

ON OFF Extended mode 20 - 2 Megabyte slow.
RAM in top 32K banks $00 to $3F,
RAM in top 32K banks $80 to $BF (fast).

OFF ON Standard mode 21 - 4 Megabyte fast.
RAM in all 64K banks, $CO to $FF.
Top 32K of $CO to $FF shadowed in top 32K
of banks $00 to $3F and $80 to $BF.

ON ON Extended mode 21. 4 Megabyte fast or slow.
RAM in all 64K banks, $CO to $FF (fast) also
shadowed banks $40 to $7C (slow).

Top 32K of these banks is also shadowed in
top 32K of banks $00 to $3F and $80 to $BF.

- Unless emulating a particular cartridge type, the most
usual mode is with both switches ON. This maps RAM
into all of the available cartridge address space, although
the RAM is shadowed to bank $00 to allow the cartridge
to respond to CPU reset. This will suit the majority of
developers who are not utilising any special hardware on
the cartridge, such as DSP chips. Any areas that are not
mapped with RAM, are shadowed from the cartridge
plugged into the through-connector. This allows the

Psy-Q Development System

210 Programmer’s Guide Super-NES

Toggle Switch

programmer to make use of hardware such as battery
backed RAM, or DSP chips.

SWI is a 3 position toggle switch, which controls whether
the cartridge ROM area is mapped to the cartridge on the
through-connector, or to the emulation RAM on the
adapter, as well as what happens when the reset button is
pressed. It may be set as follows:

UpP The ROM area is the cartridge on through-
connector; resets to adapter firmware.

CENTRE The ROM area is the emulation RAM;
resets to adapter firmware.

DOWN The ROM area is the emulation RAM;
resets to emulation RAM, that is, the
program’s startup code.

Note that the target machine can be powered-on with the
switch in the CENTRE position, then code downloaded
and the switch set to the DOWN position. Thereafter,
pressing the RESET button will reset to the program code
in emulation RAM. It also resets the sound CPU, so that
the application can verified from a full reset condition.

Psy-Q Development System

Nintendo

Chapter 14 - Setting up the Target machine 211

LED’s

LEDL1 lights at power-up or reset, and stays on to show
that the emulation RAM is enabled.

LED?2 comes on briefly at power-up or reset, then goes
off when the adapter completes its self-test. If the unit
fails its initial self test, LED2 will flash on and off to
indicate the error. Otherwise, if no error is detected, LED2
lights while the emulation RAM is write protected.

Additional Development Considerations

The adapter hardware makes use of the 64K memory
range at address $7DXXXX. This area is, therefore,
unavailable to any application program. The
ASMG658.EXE Assembler gives no indication that the
program is attempting to access illegal memory - it is the
programmer’s responsibility to ensure that no code is
ORGed into this area. Note also that DBUG658.EXE

functions will not attempt to access this area.

Similarly, this memory range must not be accessed if the
adapter hardware is run in fast mode, with Dip switch 4
set to ON. If the program requires less than 4 Megabytes
of memory, the lost 64K should not present a problem;
however, if the program requires to access the full 16
Megabits of memory, from $C00000 to $FFFFFF, be
sure that Dip-switch 4 is OFF. This will only slightly
reduce the performance of the adapter SCSI comms link.

Psy-Q Development System

212 Programmer’s Guide Super-NES

Adapter Firmware Diagnostics

e Atpower up or reset, if the adapter firmware is enabled,
and the toggle switch is in the up or middle positions, the
firmware ROM will take control of the machine and run
a few self tests on the adapter hardware.

e If no errors are detected, and if the cartridge emulation
RAM is enabled, that is, the toggle switch is in the middle
position, then certain interrupt vectors will be pointed
into the adapter’s firmware; the adapter will await
commands from the host PC.

e If the joypad START button is held down at power-on
or reset, the firmware will perform more thorough
diagnostic tests and report on the currently configured
state of the adapter, showing the results on the console
video display.

Psy-Q Development System

Nintendo Chapter 14 - Setting up the Target machine 213

Target Interface Software Functions

The adapter firmware provides a few useful functions
which can be accessed via the COP instruction. COP $XX
instructions can be entered in the Assembler source code;
the $XX selects the function, and additional parameters
are passed in registers.

These functions allow software to interact with, and
change the configuration of, the adapter downloader
firmware. In most cases, the default configuration will be
adequate for the programmer’s needs, with function usage
centring around the Poll call (COP $00).

COP Instructions

Use of unsupported COP functions will report a normal
BRK interrupt to the PC Debugger. The following
functions are currently supported:

COP $00 Poll the Host PC

The source code should periodically make one of these
calls, to allow the PC to access the host memory while the
program is running. This will, for example, allow the
Debugger to edit memory, stop the target program, and to
step, trace and insert breakpoints.

A suitable Poll rate might be 25 to 100 times a second.
Typically, the poll call is placed in the program’s main
loop, or in the VBL interrupt handler.

Psy-Q Development System

214 Programmer’s Guide Super-NES

The Poll call takes very little time, if the PC is not
requesting or sending any data. If the PC has requested an
access to the target memory, the call takes a little longer.

In this context, see also page 216; the COP $07
instruction can be used to enable or disable interrupts,
while the poll call is transferring data.

COP $01 Cold Start the adapter firmware.
All internal flags and variables are reset to their power-up
state.

COP $02 Warm Start the adapter firmware.

This execution of the program is halted, at that point.
Control is returned to the adapter downloader firmware,
which awaits commands from the host PC.

COP $03 Soft Re-Entry to Downloader program.

This is almost identical to the above function, except that
the PC is advanced past this instruction before halting.
This allows the insertion of temporary pause points so that
results can be examined in the Debugger. Pressing the run
button allows the program to continue from that point.

Psy-Q Development System

Nintendo Chapter 14 - Setting up the Target machine 215

COP $04 Get Host Status.

Returns NE & CS flags (Z flag =0, C flag=1), if PC is
waiting to access the target; that is, if a COP $00 Poll call
would transfer data. Or it returns EQ & CC flags (Z flag =
1, C flag=0), if the PC does not wish to access the target.

COP $05 Reset Interrupt Vectors.

This call re-installs the interrupt vectors, as hooked by the
adapter firmware at power-up or reset. By default, the
adapter hooks into the following vectors:-

$O00FFE4 COP dw $FFF4
;used for misc firmware functions
$OOFFE6G BRK dw $FFFO
;used for breakpoints
$OOFFES ABORT dw $FFFO
$OOFFEA NMI dw $FFFO
$OOFFEC dw $0000
$OOFFEE IRQ dw $FFFO

The memory at $O0FFFO is set-up to contain:-

$00FFFO JML BRKentry (JML $7DE0OB)
$00FFF4 JML COPentry (JML $7DEOOE)
$00FFF8 JML coldstart (JML $7DE000)

Note that, if you change the COP or BRK vectors, the
operation of the Debugger may be interfered with; the
other vectors are merely pointed to the standard BRK
handler. However, it is probable that the NMI and IRQ
will be vectored to the application’s own handler. Since
these vectors are in cartridge space, normally ROM, they
cannot be written to at runtime. The final program image

Psy-Q Development System

216 Programmer’s Guide Super-NES

may overwrite all these vectors, but, to be able to use the
Debugger in the program, the COP and BRK vectors, as
well as JMLs at $FFFO, should be set up as above.

COP $06 NOP

This instruction does nothing, except it always returns
flags EQ/CC (no error). The op-code has been
intentionally left blank, for consistency with 68K
development systems.

COP $07 Set Interrupt status on entry to downloader.

Passed: Acc.b Accumulator LSB bits 0 and 1, used to flag
whether interrupts are to be disabled during
firmware operations.

Bit O - clear to disable IRQ during firmware
BRK handler; set to leave I flag unchanged.

Bit 1 - clear to disable IRQ during firmware
POLL call; set to leave I flag unchanged.

This call can be used to enable IRQ during a poll call.
Typical uses are to avoid missing interrupts while the
Debugger is accessing target memory, or has stopped the
target. The value passed in bit O sets the interrupts which
are allowed to run, after a breakpoint is triggered on the
target. The default is for the I flag to be left unchanged,
the same as before the COP $00 poll call or BRK
instruction.

Psy-Q Development System

Nintendo Chapter 14 - Setting up the Target machine 217

COP $08 Set Write-Protect status of emulation RAM.

Passed: Acc.b = $FF to write protect cartridge emulation RAM
= $00 to write enable cartridge emulation RAM

Normally, the cartridge emulation RAM is write protected
while the application software is running, except during
interrupt handlers that are triggered while a poll call is in
operation. This is to emulate a cartridge, which is ROM
and cannot be written. For test purposes, however, the
cartridge emulation RAM can be left write enabled.
However, it should be remembered that code which writes
to this RAM will not function once it has been installed in

a ROM cartridge.
COP $09 Set target (host) ID for fileserver functions
Passed: Acc.b = ID of host to be used by fileserver functions
(Oto7or-1)

If this value has not been specified, by default the
fileserver will use the ID of the last device that connected
to it. If the target has not been connected, the default ID
will be 7, same as the default ID of a PC board.

Setting the ID to -1 causes the fileserver to use the ID of
the last host that connected to it, or 7 if no connection has
yet been made. Values higher than 7, or the same as the

target SCSI ID, return an error status, processor flags =
NE & CS.

Psy-Q Development System

218 Programmer’s Guide Super-NES

Fileserver Functions

The target adapter also contains software to provide
fileserver functions. As with the Psy-Q target BIOS calls,
these are accessed via the COP $XX instruction.

Note that all fileserver functions return CC & EQ status in
processor flags, if no error is encountered; otherwise CS
& NE are returned, with an error code in the Accumulator.
Although this error code is an 8 bit value, it is
sign-extended so that it can be checked in either 8 or 16
bit mode. The M,X,and I bits of the status register are
returned unchanged, although all fileserver functions are
designed to be called with all registers in 16 bit mode, that
is, M and X bits = 1. Interrupts are disabled during the
fileserver call.

Unless otherwise documented, all fileserver functions
operate as per the corresponding DOS file functions. The
names given to the functions below are the names which
will be displayed by the Psy-Q Super-NES Debugger, in a
disassembly window.

COP $40 fSINIT - initialise remote filing system
Passed: Nothing
Returns: CC/CS. Acc.b = standard error status

This function resets the disk system of the host, ready for
a new session; all remote-opened files are closed.

Psy-Q Development System

Nintendo

Chapter 14 - Setting up the Target machine 219

COP $41

Passed:

Returns:

COP $42

Passed:

Returns:

COP $43
Passed:

Returns:

COP $44

Passed:

Returns:

fSCREATE - create a file

DB:X.w

DB:Y.w

X.w

Pointer to zero-terminated
filename
File attributes

File handle

fSOPEN - open a file

DB:X.w

DB:Y.w

X.w

Pointer to zero terminated
filename
Open mode

File handle

fsCLOSE - close a file

Acc.w

File handle

Nothing but standard error status

fSREAD - read bytes from a file

Acc.w
DB:X.w
DB:Y.w

Y.w

File handle
Address of destination for data
Number of bytes to be read

Number of bytes actually read

Psy-Q Development System

220 Programmer’s Guide Super-NES

COP $45

Passed:

Returns:

COP $46

Passed:

Returns:

COP $47

Passed:

Returns:

COP $48

Passed:

Returns:

fSWRITE - write bytes to a file

Acc.w File handle

DB:X.w Address to write data from
DB:Y.w Number of bytes to be written
Y.w No of bytes actually written

fSSEEKO - seek to absolute file position

Acc.w File handle

X.w LSW offset

Y.w MSW offset of new file pointer
XY New value of file pointer

fSSEEK - seek relative to current file pointer

Acc.w File handle

X.w LSW offset

Y.w MSW offset of new file pointer
XY New value of file pointer

fSSEEK?2 - seek to n bytes before end of file

Acc.w File handle

X.w LSW offset

Y.w MSW offset of new file pointer
XY New value of file pointer

Psy-Q Development System

Nintendo

APPENDICES 221

APPENDICES

| sao1puaddy

Appendix A - Errors during Assembly
Appendix B - Errors during Linking
Appendix C - Librarian Errors
Appendix D - The SPC700 Assembler

Psy-Q Development System

222 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 223

Appendix A - ASM658 Error
Messages

Format: In the list below, %x represents the variable part of the
error message, as follows:

%s is replaced by a string

%c is replaced by a single character

%d is replaced by a 16 bit decimal number

%I is replaced by a 32 bit decimal number

%h is replaced by a 16 bit hexadecimal number

%n is replaced by a symbol name

%t is replaced by a symbol type, e.g. section, symbol or
group.

Assembler Messages:

’%n’ cannot be used in an expression
9on will be the name of something like a macro or register
g g

’%n’ is not a group
Group name required

’%n’ is not a section
Section name expected but name %n was found

Alignment cannot be guaranteed

Warning of attempt to align that cannot be guaranteed due
to the base alignment of the current section

Alignment’s parameter must be a defined name
In call to alignment() function

Psy-Q Development System

224 Programmer’s Guide Super-NES

Assembly failed
Text of the FAIL statement

Branch (%] bytes) is out of range
Branch too far

Cannot POPP to a local label
E.g. POPP @x

Cannot purge - name was never defined

Case choice expression cannot be evaluated
On case statement

Code generated before first section directive
Code generating statements appeared before first section
directive

Could not evaluate XDEF’d symbol
XDEF’d symbol was equated to something that could not
be evaluated

Could not open file * %s’

Datasize has not been specified
Must have a DATASIZE before DATA statement

Datasize value must be in range 1 to 256
DATASIZE statement

Decimal number illegal in this radix
Specified decimal digit not legal in current radix

DEF’s parameter must be a name
Error in DEF() function reference

Division by zero

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages

225

End of file reached without completion of %s construct
E.g. REPT withno ENDR

ENDM is illegal outside a macro definition

Error closing file
DOS close file call returned an error status

Error creating output file
Could not open the output file

Error creating temporary file
Could not create specified temporary file

Error in assembler options

Error in expression
Similar to syntax error

Error in floating point number
In IEEE32 / IEEE64 statement

Error opening list file
DOS open returned an rror status

Error reading file
DOS read call returned an error status
Error writing list file

DOS write returned an error status or disk full

Error writing object file
DOS write call returned an error or disk is full

Psy-Q Development System

226 Programmer’s Guide Super-NES

Error writing temporary file
Disk write error, probably disk full

Errors during pass 1 - pass 2 aborted
If pass 1 has errors then pass 2 is not performed

Expanded input line too long
After string equate replacement, etc. line must be <=
1024 chars

Expected comma after *
¢...¢ bracketed parameter in MACRO call parameter list

Expected comma after operand
Expected comma between operands

Expected comma between options
In an OPT statement

Expecting ’%s’ at this point
Expecting one of ENDIF/ENDCASE etc. but found

another directive

Expecting ’+’ or ’-’ after list command
In a LIST statement

Expecting ’+’ or ’-* after option
In an OPT statement

Expecting a number after /b option
On Command line

Expecting comma between operands in INSTR

Expecting comma between operands in SUBSTR

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 227

Expecting comma or end of line after list
In {..} list

Expecting ON or OFF after directive
In PUBLIC statement

Expecting options after /O
On Command line

Expecting quoted string as operand

Expression must evaluate
Must be evaluated now, not on pass 2

Fatal error - macro exited with unterminated %s loop
End of macro with unterminated WHILE/REPT/DQ loop.
Due to the way the assembler works, this must be treated
as a fatal error

Fatal error - stack underflow - PANIC
Assembler internal error - should never occur!

File name must be quoted

Files may only be specified when producing CPE or pure binary
output
In FILE attribute of group

Forward reference to redefinable symbol
Warning that a forward reference was made to a symbol
that was given a number of values in SET or =
statements. The value used in the forward reference was
the last value the symbol was set to.

Function only available when using sections

Psy-Q Development System

228 Programmer’s Guide Super-NES

Group ’%n’ is too large (%] bytes)
Group exceeds value in SIZE attribute

GROUP’s parameter must be a defined name
In GROUP() function call

GROUPEND’s parameter must be a group name
Error in call to GROUPEND() function

GROUPORG’s parameter must be a group
In call to GROUPORG() function

GROUPSIZE’s parameter must be a group name
Error in call to GROUPSIZE() function

IF does not have matching ENDIF/ENDC

Illegal addressing mode
Addressing mode not allowed for current op code

Illegal character *%c’ (%d) in input
Strange (e.g. control) character in input file

Illegal character ’%c’ in opcode field

Illegal digit in suffixed binary number
In alternate number form 101b

Illegal digit in suffixed decimal number
In alternate number form 123d

Illegal digit in suffixed hexadecimal number
In alternate number form labh

Illegal group name

Illegal index value in SUBSTR

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 229

Illegal label
Label in left hand column starts with illegal character

Illegal name for macro parameter
In macro definition

Illegal name in command
Target name in ALIAS statement

Illegal name in locals list
In LOCAL statement

Illegal name in XDEF/XREF list

Illegal parameter number
Maximum of 32 parameters

Illegal section name
Illegal start position/length in INCBIN

Illegal use of register equate
E.g. using a register equate in an expression

Illegal value (%1I)

Illegal value (%]!) for boundary in CNOP
Illegal value (%!]) for Ot.'fset in CNOP
Illegal value for base in INSTR

Initialised data in BSS section
BSS sections must be uninitialised

Psy-Q Development System

230 Programmer’s Guide Super-NES

Label ’%n’ multiply defined

LOCAL can only be used inside a macro
LOCAL statement found outside macro

Local labels may not be strings
@x EQUS ... isillegal

Local symbols cannot be XDEF’d/XREF’d
MEXIT illegal outside of macros

Missing ’(’ in function call

Missing ’)’ after function parameter(s)

Missing ’)’ after file name
In FILE attribute

Missing closing bracket in expression

Missing comma in list of case options
In =... case selector

Missing comma in XDEF/XREF list
MODULE has no corresponding MODEND

Module may not end until macro/loop expansion is complete
If a loop / macro call starts inside a module then there
must not be a MODEND until the loop / macro call
finishes

Module must end before end of macro/loop expansion - MODEND
inserted
A module started inside a loop / macro call must end
before the loop / macro call does

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 231

More than one label specified
Only one label per line (can occur when second label does
not start in left column but ends in *:”)

Move workspace command can only be used when downloading
In WORKSPACE statement

Names declared with local must not start with >%c¢’
In LOCAL statement

NARG can only be used inside a macro
Use of NARG outside macro

NARG’s parameter must be a number or a macro parameter name
Illegal operand for NARG() function

No closing quote on string

No corresponding IF
ENDIF/ELSE without IF

No corresponding DO
UNTIL without DO

No corresponding REPT
ENDR without REPT

No corresponding WHILE
ENDW without WHILE

No matching CASE statement for ENDCASE
ENDCASE without CASE

No source file specified
No source file on command line

Psy-Q Development System

232 Programmer’s Guide Super-NES

Non-binary character following %

Non-hexadecimal character ’ %c’ encountered
In HEX statement

Non-hexadecimal character starting number
Expecting 0-9 or A-F after $

Non-numeric value in DATA statement

OBJ cannot be specified when producing linkable output
OBJ attribute on group

Odd number of nibbles specified
In HEX statement

OFFSET’s parameter must be a defined name
Error in OFFSET() function call

Old version of %n cannot be purged
Only macros can be purged

One string equate can only be equated to another
Attempt to equate to expression, etc.

Only one of /p and /1 may be specified
On Command line

Only one ORG may be specified before SECTION directive
Op-code not recognised

Option stack is empty
POPO without PUSHO

Options /l and /p not available when downloading to target
On Command line

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 233

ORG ? can only be used when downloading output

ORG address cannot be specified when producing linkable output
No ORG group attributes when producing linkable output

ORG cannot be used after SECTION directive
ORG cannot be used when producing linkable output

ORG must be specified before first section directive
When using sections only one ORG statement may appear
before all section statements (other than as group
attributes)

Out of memory, Assembler aborting
Out of stack space, possibly due to recursive equates
Assemblers stack is full, possible cause is recursive

equates, e.g. x equ y+[,y equ x*2

Overflow in DATA value
DATA value too big

Overlay cannot be specified when producing linkable output
No OVER group attributes when producing linkable output

Overlay must specify a previously defined group name
Error in OVER group attribute

Parameter stack is empty
POPP encountered but nothing to pop

POPP must specify a string or undefined name

Possible infinite loop in string substitution
E.g. reference to x where x is defined as x equs x+/

Psy-Q Development System

234 Programmer’s Guide Super-NES

Previous group was not OBJ’d
OBI() attribute specified but previous group had no obj
attribute to follow on from

Psy-Q needs DOS version 3.1 or later

Purge must specify a macro name

Radix must be in range 2 to 16

REF’s parameter must be a name
Error in REF() function reference

Register not recognised
Expecting a register name but did not recognise

Remainder by zero
As for division by 0 but for % (remainder)

Repeat count must not be negative
REPT statement error

Replicated text too big
Text being replicated in a loop must be buffered in

memory but this loop was too big to fit

Resident SCSI drivers not present
PSYBIOS does not appear to be loaded

SCSI card not present - assembly aborted

SECT’s parameter must be a defined name
Error in SECT() function call

SECTEND’s parameter must be a section name
Error in call to SECTEND() function

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 235

Section stack is empty
POPS without PUSHS

Section was previously in a different group
Section assigned to a different group on second invocation

SECTSIZE’s parameter must be a section name
Error in call to SECTSIZE() function

Seek in output file failed
DOS seek call returned error status

Severity value must be in range 0 to 3
In INFORM statement

SHIFT can only be used inside a macro
SHIFT statement outside macro

Short macro calls in loops/macros must be defined before loop/macro
Short macros may not contain labels

Size cannot be specified when producing linkable output
SIZE attribute on group

Size specified in /b option must be in range 2 to 64
On command line

Square root of negative number

Statement must have a label
No label on, for example, EQU op

STRCMP requires constant strings as parameters

Psy-Q Development System

236 Programmer’s Guide Super-NES

String > %n’ cannot be shifted
String specified in SHIFT statement is not a multi-element
string (i.e. {...} bracketed) and so cannot be shifted.
STRLEN’s operand must be a quoted string
Symbol ’%n’ cannot be XDEF’d/XREF’d
Symbol ’%n’ is already XDEF’d/XREF’d

Symbol > %n’ not defined in this module
Undefined name encountered

Syntax error in expression

Timed out sending data to target
Target did not respond

Too many characters in character constant
Character constants can be from 1 to 4 characters

Too many different sections
There is a maximum of 256 sections

Too many file names specified
On command line

Too many INCLUDE files
Limit of 512 INCLUDE files

Too many INCLUDE paths specified
Too many INCLUDE paths in /j options on command line

Too many output files specified
Maximum of 256 output files

Psy-Q Development System

Nintendo Appendix A - ASM658 Error Messages 237

Too many parameters in macro call
Maximum number of parameters exceeded

Too much temporary data
Assembler limit of 16m bytes of temporary data reached

TYPE’s parameter must be a name
Call of TYPE() function

Unable to open command file
From Command line

Undefined name in command
Target name in ALIAS statement

Unexpected case option outside CASE statement
Found =... statement outside CASE/ENDCASE block

Unexpected characters at end of Command line
Unexpected characters at end of line
End of line expected but there were more characters

encountered (other than comments)

Unexpected end of line
Line ended but more input was expected

Unexpected end of line in macro parameter

Unexpected end of line in list parameter
In {..} st

Unexpected MODEND encountered
MODEND without preceding MODULE

Unknown option
In OPT statement

Psy-Q Development System

238 Programmer’s Guide Super-NES

Unknown option /%c
Unknown option on Command line

Unrecognised attribute in GROUP directive

Unrecognised optimisation switch > %c¢’
In OPT statement or Command line

User pressed Break/Ctrl-C
Assembly aborted by user

XDEF’d symbol % n not defined
Symbol was XDEF’d but never defined

XDEF/XREF can only be used when producing linkable output

Zero length INCBIN
Warning of zero length INCBIN statement

Psy-Q Development System

Nintendo Appendix B - Psylink Error Messages 239

Appendix B - Psylink Error
Messages

Format: In the list below, %x represents the variable part of the
error message, as follows:

%os is replaced by a string

Yoc is replaced by a single character

%d is replaced by a 16 bit decimal number

%l is replaced by a 32 bit decimal number

9oh is replaced by a 16 bit hexadecimal number

9on is replaced by a symbol name

%t is replaced by a symbol type, e.g. section, symbol or
group.

Linker Messages:

%t %n redefined as section
New definition of previously defined symbol

%t ’° %n’ redefined as group
New definition of previously defined symbol

%t %n’ redefined as XDEF symbol
New definition of previously defined symbol

Attempt to switch section to %t ’%n’
Non-section type symbol referenced in section switch

Attempt to use %t ’%n’ as a section in expression
Section type symbol required

Psy-Q Development System

240 Programmer’s Guide Super-NES

Branch (%] bytes) is out of range
Branch instruction cannot reach target

Branch to odd address
Warning that branch instruction goes to an odd address

Code in BSS section ’%n’
BSS type sections should not contain initialised data

COFTF file has incorrect format
COFF format files are those produced by Sierra C cross
compiler, etc. :

Different processor type specified
Object code is for different processor type than target or
attempt was made to link code for different processor types

Division by zero

Error closing file
DOS close file call returned error status

Error in /e option
On Command line

Error in /o option
On Command line

Error in /x option
On Command line

Error in command file

Error in Linker options
On Command line

Error in REGS expression

Psy-Q Development System

Nintendo Appendix B - Psylink Error Messages 241

Error reading file %f
DOS read file call returned error status

Error writing object file
DOS write file call returned error status - probably disk
full

Errors during pass 1 - pass 2 aborted
Pass 2 will not take place if there were errors on Pass 1

Expecting a decimal or hex number
/o option on Command line

File %f is in out-of-date format
File should be re-built be re-assembling

File %f is not a valid library file
File %f is not in PsyLink file format

Group ’%n’ is too large (%] bytes)
Group is larger than its size attribute allows

Group ’%n’ specified with different attributes
Different definitions of a group specify different attributes

Illegal XREF reference to %t ’%n’
Object file defines xref to symbol which cannot be
XREF’d, e.g. a Section name

Illegal zero length short branch
Short branches must not have offset of

Multiple run addresses specified
More than one run address specified

Psy-Q Development System

242 Programmer’s Guide Super-NES

No source files specified |
No source file on Command line

Object file made with out-of-date assembler
File should be re-built before re-assembling

Only built in groups can be used when making relocatable output
When /r command line option is used, only the built in
groups can be used, i.e. no new group’s may be defined

Option /p not available when downloading to target

Options /p and /r cannot be used together
On Command line

ORG ? can only be used when downloading output
Out of memory, Linker aborting
Previous group was not OBJ’d
Cannot specify OBJ() attribute if previous group did not

have obj attribute

Reference to %t ’%n’ in expression
Use of, e.g. a section name in an expression

Reference to undefined symbol #%h
There is an internal error in the object file

Relocatable output cannot be ORG’d
Remainder by zero
Run-time patch to odd address

Warning that a run-time longword patch to an odd address
will occur which may cause some systems to crash

Psy-Q Development System

Nintendo Appendix B - Psylink Error Messages 243

SCSI card not present - linking aborted
Could not find SCSI card

SCSI drivers not loaded
PSYBIOS does not appear to be present

Section ’%n’ must be in one of groups code, data or BSS

Section *%n’ placed in non-group symbol #%h
There is an internal error in the object file

Section ’%n’ placed in non-group symbol ’%n’
An attempt was made to place a section in a non-group
type symbol

Section ’%n’ placed in two different groups
Section is placed in different groups

Section *%n’ placed in unknown group symbol #%h
There is an internal error in the object file

Section * %n’ must be in one of groups text, data or BSS

Specified patch cannot be represented in target’s relocation format
When producing relocatable code, certain run time
relocations are allowed, depending on the target output
file format. This error occurs when the type of patch
required cannot be represented in the output file format,
e.g. patching a byte in the ST file format which allows
only longwords to be patched.

Symbol * %n’ multiply defined
New definition of previously defined symbol

Symbol ’%n’ not defined
Undefined symbol

Psy-Q Development System

244 Programmer’s Guide Super-NES

Symbol > %n’ placed in non-section symbol #%h
There is an internal error in the object file

Symbol ’%n’ placed in unknown section symbol #%h
There is an internal error in the object file

Symbol in COFF format file has unrecognised class
COFF format files arc those produced by Sierra C cross
compiler, etc.

Timed out sending data to target
Target not responding or offline

Too many file names specified
Too many parameters on command line

Too many modules to link
Maximum of 256 modules may be linked

Too many symbols in COFF format file
COFF format files are those produced by Sierra C cross
compiler, etc.

Unable to open output file
Could not open specified output file

Undefined symbol in COFF file patch record
COFF format files are those produced by Sierra C cross
compiler, etc.

Unit number must be in range 0-127

Unknown option /%c
On Command line

Unknown processor type ’%s’
Could not recognise target processor type

Psy-Q Development System

Nintendo Appendix B - Psylink Error Messages

245

Unrecognised relocatable output format
/r option on command line

User pressed Break/Ctrl-C
Linking aborted by user

Value (%]I) out of range in instruction patch
Value to be patched in is out of range

Psy-Q Development System

246 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo Appendix C - Psylib Error Messages

247

Appendix C - Psylib Error
Messages

Librarian Messages:
Cannot add module : it already exists
Module may only appear in a library once

Could not create object file
Error creating object file when extracting

Could not create temporary file
Error creating temporary file

Could not open/create
DOS error opening file

Error reading library file
DOS error reading file

Error writing library file
DOS error writing file, probably disk full

Incorrect format in object file
Error in object file format - re-build it

No files matching

No object files matching the specifications were found

No library file specified

Psy-Q Development System

248 Programmer’s Guide Super-NES

No object files specified

No option specified
An action option must be specified on the command line

Unknown option /
On Command line, option not recognised

Psy-Q Development System

Nintendo Appendix D - The SPC700 Assembler 249

Appendix D - The SPC700
Assembler

This appendix documents the SPC700 Assembler, which
is supplied with some versions of the Psy-Q Development
system.

It is not an exhaustive description of the Assembler, since,
functionally, it is almost identical to the ASM658
Assembler. Therefore, this section details the differences
between the two programs; for any part of the program not
mentioned in the following pages, refer to the ASM658
documentation.

Psy-Q Development System

250 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Appendix D - The SPC700 Assembler 251

Assembler Command Line

OPT Directive

lalcl-Nel s
z

=

gz <o

Using the SPC700 Assembler

For information about the list of Assembler Options that
can follow the /o switch, see below, under the OPT

The SPC700 Assembler supports the following options,
which may follow an OPT statement in the source code,
or a /o switch on the Assembler command line:

Allow alternate number format.

Switch on Case Sensitivity

De-scope Local Labels on EQU, SET, etc.
Print lines containing errors.

Use ! as leading character for Local Labels.
Use x as leading character for Local Labels;
X may not be + or -.

Treat equated symbols as labels

Write Local Labels to symbol file..

Print Warnings.

Allow white space in operands.

Assume XREFs are in the section in which
they are declared.

Psy-Q Development System

252 Programmer’s Guide Super-NES

SPC700 Addressing Modes

Absolute Addressing can be forced by prefixing the
operand with an exclamation mark (). For instance,

lda 1$23

Direct Page Addressing can be forced by prefixing the
operand with a less than (<). For instance,

lda <vari

If neither of the prefix operators < or ! are used, the
Assembler will base the addressing mode to use on the
following considerations:

if the operand value is not known at the point that the
instruction is encountered on pass 1, Absolute Addressing
will be used;

if the operand value is known, and is in the currently
assumed Direct Page ($00xx or $01xx), Direct Page
Addressing will be used;

otherwise, Absolute Addressing will be used.

Psy-Q Development System

Nintendo Appendix D - The SPC700 Assembler 253

Psy-Q Development System

254 Programmer’s Guide Super-NES

Psy-Q Development System

Nintendo

Index 255

Index Conventions

Throughout this Index, the following applies:

Program Names are in capitals;
Directives and Functions are in italic capitals when the
reference is to the definition;

e Subsidiary references to Directives and Functions are
shown following the main entry.

Symbols

et anasnnsnsnssssssssmmsnssnsnonsonsssenaennse s 201
e 1605 s venesannnsssisns smpssssana s es o bosmies 49
 cocosnininmisnas e anmsnsimasss saseadassissssannsnet 203
i e nasasssasmosensie o nsamansesaiach 25
DR cesmmmisniiinasmneassssessinassansssssen 200
O crrmssreiinstivnsannnsnsnssonasasnbbthbost todsomenen 25
9od, Ton, JoS v 149
Slissmsmriinsiiiics s enesiasssisessmenns 23,106
Sl coissmmmanansisinimsmmnnssuensnssassnenns 158, 168
eSS st imnssnnbenasmnesenssnnasralonsd 49
B L, 27,109
/ .13, 19
...24

e T S e Ras s sesap e s et 105
T I 81
e T R s e mes s e s e 81
D e T RS s me s e e 163
T 64,81, 135
() — 13,24, 123, 144, 169, 182, 199
NI R 27,107

V% s 25,109

N st ns s anssammns sanemesssamsmmessismenions 108
RS ciconmnsunsannssnnsansssnessanssnssasissarest 26, 50
_filename.....oooooieeeiiii e, 26
{1} 47,109
B ET a3 st ss smmmsansnagss s asssamsnan saomasa e 134
Expression Operators 31-32
A
Activity Windows........cc.coevevvviecvvnne... 162
AdaApleCimsmmmssimmmmamminissmmsosmssnress 6
Addressing Modesooeueveieieviennnnn. 33
ALTAS wosommvvmmmaransmrrmmmnasis o 38
ANZNMENE s 30
ASM658.EXE
See Assembler
Assembler
Command Rilesssmaatmmmninsss 13
Command Line Switches 13
Command Line Syntax............co........ 13
ConStANTS s srmsmrmsnmiwi s 28
Environment Variable 16
Flle/Options:: s e 13
FURCHONSmmmrmmrntrmne 28 -29
OPETAOTS sirsss st 3
OpHmiSationS: e s 145

Psy-Q Development System

256 Index Super-NES
OPHONS .o 14, 141 - 142 Special s 26
Run-time Errors........coccoeeeieninns 18,223 Continuation Lines
Running with Brief.........ccccoeiiin 17 Assembler o ssamammmssimmes 23
Terminating the N ... 15 Make File ULty sosvessissssssonesssss 203

ASSISNINENT ..onvonesns onvnassnesissmisussiciosssssmssin 41 ICPEFiles:cussnomsmmmansmanss 14 19; 99
ASSUMEc.cconnenssuorsnnsonississisasssissmissisin 89 Cursorin Windows .u:wssasssmmssmay 167
AUTOEXEC.BAT changes........cccccoseervences 7
D
B
DACK ChafRNEL....coccvissumssmssonvemasssivismmimcns 6
Base Port Addressses s smmsesmmssmvmsssmoss 6 DA AR e S e R T 61
BRIEF ovosinansimes iyt I DATASIZ E . it et o i 0 61
BSS cusnnnsnnasmmmrassmmsnan i 131 DaICOASTANLS oorsisiiusitiianmmibsnitiivemnniiie 26
See Al iisiisissseassniasssvssisass 59 DB, DWW DL, DTcvviiivisciisissmevsessossos 56
Buffer Size . 10 DBUG658.EXE
See Debugger
DEBZDEW, DCL DET suviiosiansasiviisi ioniitndd
C Debugger
Activity Windows........ccceveeeenenns 162
CAE ot e] 94 Iy e —_— 157
CASE covvvvvvrvens 81 Command Line Syntax....... . 157
See also....... 23 Configuration Files...... .. 160
Case Sensitivity v smmmerssssieresssroneen 143 EXDTESSIONS . c.eviesintiumsnssonnssnsianmmasans 169
Character Constantsc..ceueeeeueccienincns 25 Keyboard Options.... 169 - 170
CNOE s S Link SOtWAreo.oeroevoeoreesor 177
S EEA1S0 TR T Ak M e e mascint 135 Menu Options... 175
Command Files...... T R e o 012 e 158
Command Lines..... .. 13,181, 191, 195 PLOMIPLS erere e seeree e 169
Assembler.... 13 Virtual Screens . R (¢
e B DT a0t B G 75
Comments Directives, Assembler
Asscmb.lcr......... 23 See Chapters 4 - 9
i g b =203 Directives, Make Filec..oroorrrerrn 201
Configuration Filescoccoevveiricriennnn. 160 DISABLE oo 38
Constants Disassembly Window 162
CRATACTE ittt titadasvndsubbrosvaiolbnt oot 25 DMA oo 10
e il > . T PRI 86
IREEER, s stnrtiass .2
Locaton CONNRLEE o mettiinmiantintiios 27

Psy-Q Development System

Nintendo Index 257
Downloading Programs F
See RUN.EXE
DRQ Channel TAIL siciverssmmmiivinsmamasmsonnssnssansasssssonses 149
DS S renisn et T AN e R FILE ... T T - .
SeeialsOimmminnisiimmmsmmsessnessaressonss 133
Bile: Window: smuarsissssmssensssesssasonsionss 163
E Functions
Fileserver, Target Interface 218
B 79 Ten gl O BlE s i 29
BLSEIF woowmevmmmmmvnsmmammnnana 10 Nummber Of ATgUments............... 110
END' sovomammsrmmmmmmmnmvassmsammsss 1 Offset within SECHON...................... 138
ENDEC s.ovmmmsvmmmmmmmmivsmmmsrnmasissw e 79 e 119
ENDCASE ooy 81 Special Group Functions «.............. 29
Y ——— 79 . : i
Special Section Functions 29
ENDNE oo ereeverrmsramemmassrsransrns 103 :)
String Comparisonc.cocceeeeenee. 118
See:alS0 st 111 :
Symbol Alignment............................30
ENDP . ivosvmmsssmmmnsmmmnmsmsasmnng 91
Symbol Typeismmmmsmiosn 114
ENDR s 83
Y B — 84
Environment Variables................. 7,16-17 G
Y 43
SYSTEN | (L0 A —————— 114,143 GLOBAL ..., 153,187
EQUS oo 47 GROUP e 131
SEE AlSO:crrrrmmmmrm e 114, 120 See alSO. i 134
Error Line Printing...........cccccccovcevveen. 143 Group Attributes
Error Messages OB cemmiinmini it 132
ASSETBleR v L0 D23 () G R = S-S 132
L1517 T O TR . 1| (T] 133
LEifike s 239 S oy 132
TargetInterface ;ovunmvmmemmmsismn 18 L I 183
Expressions with Sectionscccoeveevievviviesere e 134
CONSLANLS ..o e 28
D] o1 O OO 169

Functions........cceevveeeevvevieeviiie . 28
Make File Utilify. b 202
65757711 (6) o O 31

Psy-Q Development System

258 Index Super-NES
| Labels
Format......cooveueeeeeeiece e 24
LIS s T e s R SR T e 8 Local.. 123
BB E D e o 0 o T S D B VIS 580 08 62 SYMDOLS it 24
IEEE64..... .62 Librarian
ol e i D L L SR TR L 79 Command Line Switches................. 191
IR) £ ot s Pkl el s S 14 Command Line SyntaX.........ccceee. 191
UNCBING co-toe i s T e NI I Syinen e 72 File Optionsccccoeveeemceevinvrernneenn 191
INCLUDE, icccccvivsvissvissionsivessnbiossnsinsinrssnssn 70 Run-time Errorscoeeveveveeicnnennne. 247
S S 1S s om0 T TR R 14 Link Software, Debugger........c.c.cceeevevine 177
INFORM ivvovvieviuiisaibovosiaiinasonsin 149 Linker
Installation Command Files......cccovvevvireeernnene. 183
EHECKSIEIS sy v s 2 or i) nonon ssiran 3 Command Line Switches................. 181
PC Interface... P Command Line SyntaxX.........ccceeun... 181
PC Software....... e File Optionscc.coevimvivirineiniineinns 182
Target Interface 207 Run-time Errors.......ccoovvvnieeennas 239
Under WIndows.......cccueeeeeeecrvemeereneenecnne 8 LIST e 147
TN S T R e o b B T P e SRS 119 Listing State .c.cccceeevvnneeneieieee e 147
Integer Constants ... 25 LOCAL ..o 127
Intel Numbers 25,143 Local Labels
Interrupts........... s 0509 SCOPC vttt 123
TR INUTIDET ozt ki B ecth b 0 6 SYNLAX coveiviie it 123
Issue Diskette, Contents.... voxiii Location COUNter ...eeeecveveeveescveveeiineeens 27
Locking the display......cccoeeeveieiiiinnns 167
LONGA ..ot e 96
J 1 50) e O 96

Keyboard, Assemblercccoeeueennne 15,17
Keyboard, Debugger..........ccoeunene 169 - 170

SecalSo.cmsassssss 475 105,109

Macros
Continuation Lngscessssssssiess 106
Control Characters...swmssusssamsssusssss 109
DebUSEEr .. ossssssassissmmnsmmsionmy 199
Entire Macro Parameters................. 108
Extended Parameterscccecueeeee. 109
Format of Parametersc..ccc.cee.... 105

Psy-Q Development System

Nintendo Index 259
Label Importing s smsssenssmsms 109 N
Named Parameters o 105
Nuinbers 1o Stings i 107 NARG ..iuivocnsinsivmmmmssosmioesssnss 110
Parameter TYPe usnsussunssasmmns 114 S€e AlS0rrnatnimnanan2 0y 83; 109
SEING Handling e wsmmenssmmmmnnsl 15 NOLIST ovissvs suorsorsssssssnerssonsssssssomennss 147
L8} 1T a10 (8 ;1o 1) [Fu————— 107

MACROS ssvsmsmmmmsnnmamans L 11
See alsS0.e e 14,114

Make File Utility o
Conimand. EXecution:wsmsssmmsesmma 198
om0 SIS ool 5 st o b
Command Line Syntax................... 9 OBJ AUIDULE) oo 132

Command Prefixes........................... 199

Commentsccccevvereerre e 203
D151 (0 9 (o (G ——————— 196
DIrectivescoveveeeeviere e 201
EXPIessionsccoveeeeeenriereereienienn. 202
File Contentsccc.......... 196 - 203
Implicit'Rules......cccoecenevireernecnncnn.. 197
Line Continuationcoc.......... 203
MACTOS . vveeveeetee e 199
Pre-defined Macros.......................... 200
Value Assignment........ccceeeererunne.. 202

MAKEFILEMAKccoocvviiieeeeneen. 195
Menus, Debugger...........cocevvvcnvvenenn. 175
Merging Windows.........ccccceveevrvvnnn.... 166

MEXIT ...ttt 103
MODENDoveeiiiiinieieriieceen 125
See also....ccooivnicneiie 123
MODULE............oovoieiiinneeanrreann 125
See alS0...uieniivee e 123
Mouse
Debugger Optionsccccveveveeenen.. 158
USAZE ..ot 168
Moving between Windows..................... 165
MX o 96

OBJEND. isivssomssnsmmsnmismmennsis 67
OFFSET vivovsvnimmmsvsossnmsmms 138
Operator Precedence s snssiin. 32
OPEIAtoTs: s ovsmsssnismmnunmmasmmammsI1L

See alSO..uuiiiiiiee et 13,123
OPHMiSAONS ssswessssssmsmmmmsamrsmsin 145
ORG: it 64

See alSO....ccovvivevieeieeee, 67,135,182
ORG (attribute)oceeeeeveeeeeeeeeceeeeeee e 132

See alSO. i 135
OVER ..ccissvsvvessssssossismmsssivsssssssinssnvisisss 133

P

PC Interface

Installation...

JUTPETS et wsen sbovsnsvisi Bt ssesses 6
PC Software

Installationcccceveveeiverinrierere e, q

Running from Windows....................... 8

B Bilesis. .onnwinaninsimaimtnsin

Psy-Q Development System

260 Index Super-NES
POPS ..o e 137 SET oo e e e 45
PROC ..o 91 See alSO.uuiiniierecieceeeene 114,124, 143
PSYBIOS.COM.......oooiiiieeiiee e O SHIFT .o e e 110
PSYLIB.EXE SEE AISO .uvvevierecve et et 109

See Librarian STZE..........covnssmnsnessnnsnnnbusnsananssisssbossianssiia 132
PSYLINK.EXE Source Windowcccceeeveenvceneereeeeeneens 162
See Linker SPC700 Assembleroeeeeeieeeneeneieeenns 251
PSYMAKE.EXE Splitting a Windowc.ccoveevveniiinnnnns 166
See Make File Utility
PUBLICooveeeeeeeeee e 151,185 Statements
PURGE ..o 113 TR OTHTIAL, ov s esoasssinsionsnnssannsansisssisa siasassns 20
PUSHA ...t e e 08 SHIRCMEP.........c000n0 0 msesonivaneansiacissiviassnasss 118
PUSHO ..o eeeee e 146 ISEREEN....cnesessssasonssanssassismsssssisssmsmssmag WL
PUSHP c..oooeeeeeeeeeeeeeeee et 112 SSUBSTR......consnnssnssnsssmmnsssesssisssssssimsss 120
PUSHS . 137
T
R
Target Interface
RADIX .ooooeeeieeeeeeeeeee e e e 37 S bitmode sinrammammnsrnariie 10
See also.......... 25,143 Fileserver Functionsc.ccceeeeeeee 218
RB,RW,RL, RT.....ccvveoeeeeeee e 50 Toggle Switch s 210
REF .noiiiiiivcuumsnesanassnnansssssssssasssnmssmnsssssssas T4 Text WindoWsswomssarssmsmmsssnsemsmssts 163
Register Windowcccooveeneineiiennn. 162 Time Constants st 26
REGS oot 99 Toggle Switch :ussmmummnsmsmmmas 210
SCC AISO cveeeeeeeeeeceeceeeeeeieeereesee e 18 TSR
REPT ..ot e s 83 See PSYBIOS.COM
Resizing @ WIndowc.cccoecenviieinennn 1660 TYPE (i 114
RSSET ..ot e e 52
RUNEXE o3, 10U
NI DSt i Bowevsalvn Sioiiiestile 86
S
SOST Dievice Number ... o, 9,15, 182 W
SECTocoosnenossnssssissim Gumimmmvats 138)
SECTION oo 134 WAIMINES oo 144
SEE ASO..onerusesesssissisissismmsmm G
Selecting @ Windowccoceeeeevieieenennns 165

Psy-Q Development System

Nintendo

Index

261

WHILE ..ot 84
T o 86
WHhite SPacesccc.oceveeiverveeeceee e 145
X
151, 185
114,153
151, 185
See als0..c.uuniveecieecree 114, 145, 153
Z
Zilog Numbers.......c.cevvvevveervecnennne. 25,143

Psy-Q Development System

262 Index Super-NES

Psy-Q Development System

' 4

